科普 宇宙、地球和生命的进化:时间的1000个瞬间   》 第29节:二、太阳系形成(7)      Lin Weimin

  当微粒被吸引向中心团块的时候,有一种斥力使下落运动发生偏转,变成了绕团块的运动,这样中心团块就变成一个巨大的旋转的铁饼。在这个铁饼里,微粒在互相冲撞的运动中自然达到一个平衡状态,这样就造成了行星彼此同向平行的运动。而在形成行星的团块绕太阳运转时,跟在它后面的微粒受它吸引而加速,从团块的外侧落到它的上面,这样就产生了一种推动力使它自转,并且使行星的自转和公转方向一致。
  这种星云的旋转和离心力使得星云变扁,这恰好说明了行星的共面性、近圆性、同向性是自然运动的结果。
  行星密度分布有一个显著的特点,就是离太阳越远的行星密度越小。这是因为离太阳越近,星云的温度就越高,这样只有比较重的物质才能凝固起来,所以在这里形成的行星密度大;而离太阳越远,温度越低,比较轻的物质才可以凝固,因而在这里形成的行星密度小。所以太阳系行星从总体分布上呈现出密度从里向外逐渐减小的特征。
  行星物质起源 行星的物质起源是一个化学上的课题。我们知道中心太阳凝聚时,它的周围有一个在太阳收缩期间从太阳里抛出来的尘气圆盘,尘埃粒子在互相靠近和吸引积聚并形成行星以前,会朝黄道面分离开来。天文学上称其为母尘气云,就是行星最开始的尘埃团体。完全有理由认为母尘气云混合得很好并且在化学上是同质的,即这些母尘气云在化学性质上应该是非常相似的。
  关于这种云的化学组成的证据有好几个来源,而且是相互一致的。这些证据包括目前太阳系中最原始而尚未变质的陨石(例如一些碳质球粒陨石,请记住这种可能代表行星最原始物质的陨石,它将为行星演化提供非常重要的证据)中的元素丰度(各种元素所占的比重或者比例)的测定,以及以核合成过程和核素分类学等为依据的论据。为方便起见,把原始尘埃中的元素分成三大类:"气"、"冰"和"岩石",这是这些元素在相当低的温度下形成的。科学研究表明,"气"(主要是氢和氨的成分)占主要优势。在类地行星形成期间,这些气体几乎全部丢失了,在外行星中间也丢失了很多。所以有理由相信,最初的行星星云应该比现在存在的行星大许多倍。
  现在需要关注一下铁在行星演化中的重要作用。我们知道,铁在120℃以下如果暴露在氧气环境下,会氧化形成氧化铁和磁铁,而如果高于这个温度,则磁铁会被还原成金属铁。一个简单的实验就可以证明这点,用火焰烧烤一块磁铁会很快使它失去磁性。
  在原始的太阳星云里,由于所处的宇宙的低温环境,所有的铁最初都以氧化态存在。但是我们已经知道,地球、月球、陨石以及金星和水星全都含有金属铁,由此可得出结论:在尘埃吸积形成行星之前或是与此同时,氧化的铁被部分地还原成了金属铁。现在回顾一下那些原始的碳质球粒陨石,也许同太阳星云里的原始尘埃颗粒密切相关。科学研究发现,这种陨石里所有的铁都是被氧化的。仔细的化学分析还表明,碳质球粒陨石在相当大的程度上保留了大多数元素的原始丰度,除了那些高度挥发性的元素以外。它们经历了非常简单的化学和热的历史,而且在被吸积进母体后,不曾被加热到100℃以上。现在有相当多的证据支持对这些都是极其原始的物体的看法,它们为鉴定行星形成理论提供了重要的证据。碳质球粒陨石的明显特点之一是它含有大量碳质物质,包括许多种复杂的有机化合物。许多星际分子同在这些陨石里找到的化合物是密切相关的。当主要由一氧化碳和氢所组成的混合气体在有硅酸盐氧化物作为催化剂的情况下冷却时,不是生成了热力学上稳定的甲烷,而是在这些条件下很容易产生大量亚稳态的复杂有机化合物,倘若非常快地冷下来,这些化合物也许就可以长久地保留下来。



   我读累了,想听点音乐或者请来支歌曲!
    
<< Previous Chapter   Next Chapter >>   


【Source】内蒙古人民出版社
第1节:一、时间荒漠第2节:二、时间零点(1)第3节:二、时间零点(2)第4节:二、时间零点(3)
第5节:二、时间零点(4)第6节:二、时间零点(5)第7节:三、物质形成(1)第8节:三、物质形成(2)
第9节:三、物质形成(3)第10节:三、物质形成(4)第11节:三、物质形成(5)第12节:三、物质形成(6)
第13节:三、物质形成(7)第14节:三、物质形成(8)第15节:三、物质形成(9)第16节:三、物质形成(10)
第17节:三、物质形成(11)第18节:一、恒星(1)第19节:一、恒星(2)第20节:一、恒星(3)
第21节:一、恒星(4)第22节:一、恒星(5)第23节:二、太阳系形成(1)第24节:二、太阳系形成(2)
No.   I   [II]   [III]   Page

Comments (0)