天文算法类 九章算术   》 九章算术注序      Liu Hui

《九章算术》是中国古代数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)等人。 《九章算术》的主要内容: 《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音崔cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》的九章的主要内容分别是: 第一章“方田”:田亩面积计算; 第二章“粟米”:谷物粮食的按比例折换; 第三章“衰分”:比例分配问题; 第四章“少广”:已知面积、体积、求其一边长和径长等; 第五章“商功”:土石工程、体积计算; 第六章“均输”:合理摊派赋税; 第七章“盈不足”:即双设法问题; 第八章“方程”:一次方程组问题; 第九章“勾股”:利用勾股定理求解的各种问题. 《九章算术》的数学成就 《九章算术》中的数学成就是多方面的: (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的. (2)、在几何方面,主要是面积、体积计算。 (3)、在代数方面,主要有一次方程组解法、开平方、开立方、一般二次方程解法等。“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。现在它已被译成日、俄、德、英、法等多种文字。 关于《九章算术》的历史考证: 现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。 关于对《九章算术》所做的注住要有:三国时曹魏刘徽注,唐朝李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。 对《九章算术》的评价和其对后世的影响: 《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。 可以说,《九章算术》是中国为数学发展做出的又一杰出贡献。
九章算术注序 昔在庖犠氏始画八卦,以通神明之德,以类万物之情,作九九之数,以合六爻之变。暨于黄帝神而化之,引而伸之,于是建历纪,协律吕,用稽道原,然后两仪四象精微之气可得而效焉。记称隶首作数,其详未之闻也。按周公制礼而有九数,九数之流,则《九章》是矣。往者暴秦焚书,经术散坏。自时厥后,汉北 平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论者多近语也。徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注。事类相推,各有攸归,故枝条虽分而同本榦知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。且算在六艺,古者以宾兴贤能,教习国子;虽曰九数,其能穷纤入微,探测无方;至于以法相传,亦犹规矩度量可得而共,非特难为也。当今好之者寡,故世虽多通才达学,而未必能综于此耳。《周官·大司徒》职,夏至日中立八尺之表。其景尺有五寸,谓之地中。说云,南戴日下万五千里。夫云尔者,以术推之。案:《九章》立四表望远及因木望山之术,皆端旁互见,无有超邈若斯之类。然则苍等为术犹未足以博尽群数也。徽寻九数有重差之名,原其指趣乃所以施于此也。凡望极高、测绝深而兼知其远者必用重差、句股,则必以重差为率,故曰重差也。立两表于洛阳之城,令高八尺,南北各尽平地。同日度其正中之时。以景差为法,表高乘表间为实,实如法而一。所得加表高,即日去地也。以南表之景乘表间为实,实如法而一,即为从南表至南戴日下也。以南戴日下及日去地为句、股,为之求弦,即日去人也。以径寸之筒南望日,日满筒空,则定筒之长短以为股率,以筒径为句率,日去人之数为大股,大股之句即日径也。虽夫圆穹之象犹曰可度,又况泰山之高与江海之广哉。徽以为今之史籍且略举天地之物,考论厥数,载之于志,以阐世术之美,辄造《重差》,并为注解,以究古人之意,缀于句股之下。度高者重表,测深者累矩,孤离者三望,离而又旁求者四望。触类而长之,则虽幽遐诡伏,靡所不入,博物君子,详而览焉。



   我读累了,想听点音乐或者请来支歌曲!
    
Next Chapter >>   
九章算术注序卷一卷二卷三卷四卷五卷六卷七卷八卷九

Comments (0)