金融 > 72法则
目录
No. 1
  所谓的“72法则”就是以1%的复利来计息,经过72年以后,你的本金就会变成原来的一倍。这个公式好用的地方在于它能以一推十,例如:利用5%年报酬率的投资工具,经过14.4年(72/5)本金就变成一倍;利用12%的投资工具,则要六年左右(72/12),才能让一块钱变成二块钱。
  因此,今天如果你手中有100万元,运用了报酬率15%的投资工具,你可以很快便知道,经过约4.8年,你的100万元就会变成200万元。
  虽然利用72法则不像查表计算那么精确,但也已经十分接近了,因此当你手中少了一份复利表时,记住简单的72法则,或许能够帮你不少的忙。(文章来源:个人理财网http://www.grlcw.com)
72法则的运用
  例1:某企业平均年收益增长率为20%,那么需要多少年企业才会实现年收益翻一倍的目标?
  答:72÷20=3.6年
  例2:某企业在9年中平均年收益翻了3番,那么9年内的年平均收益增长率为多少?
  答:9年财务收益翻了三番,说明企业平均3年翻一番,那么年平均收益增长率为:72÷3=24,即财务年平均收益增长率为24%
数字选择
  之所以选用72,是因为它有较多因数,容易被整除,更方便计算。它的因数有1、2、3、4、6、8、9、12和它本身。
  一般息率或年期的复利
  使用72作为分子足够计算一般息率(由6至10%),但对于较高的息率,准确度会降低。
  低息率或逐日复利
  对于低息率或逐日复利,69.3会提供较准确的结果(因为ln2约等于69.3%,参见下面“原理”)。对于少过6%的计算,使用69.3也会较为准确。
高息率计算的调整
  对于高息率,较大的分子会较理想,如若要计算20%,以76除之得3.8,与实际数值相差0.002,但以72除之得3.6,与实际值相差0.2。若息率大过10%,使用72的误差介乎2.4%至−14.0%。
  较大利息率
  若计算涉及较大利息率(r),以作以下调整:
  t = [72+(r-8)/3] ÷ r (近似值)
  逐日复息
  若计算逐日复息,则可作以下调整:
  t = (69.3+r/3) ÷ r
误差
  72法则估算值与精确计算出来的值相差到底有多大?了解了它们之间的误差,我们才能在实际运用中心中有数,运用起来才有底气。道升使用电子表格计算出了二张表格,可以对比一下72法则与精确计算之间的误差。在规定年限内企业的总收益翻了一倍,那么计算企业的平均年收益率。可以看出前面三项误差最大,只要把前面三项的误差记住了,而且的计算误差不会超过1%,已经很小了,可以忽略不了。所以使用72法则来估算是符合实际的。当1年企业收益翻1倍时,72法则的年收益率为72%,而精确计算为100%,误差最大,为28%。其实在1年内企业收益翻1番根本没有必要计算了,年收益率当然是100%了。当企业在2年内收益翻了1番时,72法则计算得出平均年收益率为36%,而精确计算为41.42%,误差为5.42%。在三年内企业的总收益翻一倍时,误差只有1.99%。
原理
  定期复利
  定期复利的将来值(FV)为:
  FV = PV * (1+r)^t
  当中PV为现在值、t为期数、r为每一期的利率。
  当该笔投资倍增,则FV = 2PV。代入上式后,可简化为:
  2 = (1+r)^t
  解方程得,t = ln2 ÷ ln(1+r)
  若r数值较小,则ln(1+r)约等于r(这是泰勒级数的第一项);加上ln2 ≈ 0.693147,于是:
  t ≈ 0.693147 ÷ r