數理化 > 陳氏定理
目錄
No. 1
  陳氏定理
  陳氏定理是中國數學家陳景潤於1966年發表,1973年公佈詳細證明方法。這個定理證明任何一個足夠大的偶數都可以表示成一個素數和一個半素數的和,也就是我們通常所說的“1+2”。
  1742年德國人哥德巴赫給當時住在俄國彼得堡的大數學家歐拉寫了一封信,在信中提出兩個問題:第一,是否每個大於4的偶數都能表示為兩個奇質數之和?如6=3+3,14=3+11等。第二,是否每個大於7的奇數都能表示3個奇質數之和?如9=3+3+3,15=3+5+7等。這就是著名的哥德巴赫猜想。
  哥德巴赫猜想
  當年徐遲的一篇報告文學,中國人知道了陳景潤和哥德巴赫猜想。
  那麽,什麽是哥德巴赫猜想呢?
  哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(衹能被和它本身整除的數)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,提出了以下的猜想:
  (a)任何一個>=6之偶數,都可以表示成兩個奇質數之和。
  (b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。
  用當代語言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個素數的和。偶數的猜想是說,大於等於4的偶數一定是兩個素數的和。
  實際上第一個問題的正確解法可以推出第二個問題的正確解法,因為每個大於 7的奇數顯然可以表示為一個大於4的偶數與3的和。1937年,蘇聯數學家維諾格拉多夫利用他獨創的“三角和”方法證明了每個充分大的奇數可以表示為3個奇質數之和,基本上解决了第二個問題。但是第一個問題至今仍未解决。
  這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的註意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻剋它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。
  從此,這道著名的數學難題引起了世界上成千上萬數學家的註意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的"明珠"。 人們對哥德巴赫猜想難題的熱情,歷經兩百多年而不衰。世界上許許多多的數學工作者,殫精竭慮,費盡心機,然而至今仍不得其解。
  “s+t”問題
  到了20世紀20年代,纔有人開始嚮哥德巴赫猜想靠近。1920年挪威數學家布朗用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數裏所含質數因子的個數,直到最後使每個數裏都是一個質數為止,這樣就證明了哥德巴赫猜想。
  目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理:“任何充分大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。”通常都簡稱這個結果為大偶數可表示為 “1 + 2”的形式。
  在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱“s + t”問題)之進展情況如下:
  1920年,挪威的布朗證明了‘“9 + 9”。
  1924年,德國的拉特馬赫證明了“7 + 7”。
  1932年,英國的埃斯特曼證明了“6 + 6”。
  1937年,意大利的蕾西先後證明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
  1938年,蘇聯的布赫夕太勃證明了“5 + 5”。
  1940年,蘇聯的布赫夕太勃證明了“4 + 4”。
  1948年,匈牙利的瑞尼證明了“1 + c”,其中c是一很大的自然數。
  1956年,中國的王元證明了“3 + 4”。
  1957年,中國的王元先後證明了 “3 + 3”和“2 + 3”。
  1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了“1 + 5”, 中國的王元證明了“1 + 4”。
  1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及 意大利的朋比利證明了“1 + 3 ”。
  1966年,中國的陳景潤證明了 “1 + 2 ”。
  由於陳景潤的貢獻,人類距離哥德巴赫猜想的最後結果“1+1”僅有一步之遙了。但為了實現這最後的一步,也許還要歷經一個漫長的探索過程。有許多數學家認為,要想證明“1+1”,必須通過創造新的數學方法,以往的路很可能都是走不通的。
  從1920年布朗證明"9+9"到1966年陳景潤攻下“1+2”,歷經46年。自"陳氏定理"誕生至今的30多年裏,人們對哥德巴赫猜想猜想的進一步研究,均勞而無功。
  布朗篩法的思路是這樣的:即任一偶數(自然數)可以寫為2n,這裏n是一個自然數,2n可以表示為n個不同形式的一對自然數之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在篩去不適合哥德巴赫猜想結論的所有那些自然數對之後(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能夠證明至少還有一對自然數未被篩去,例如記其中的一對為p1和p2,那麽p1和p2都是素數,即得n=p1+p2,這樣哥德巴赫猜想就被證明了。前一部分的敘述是很自然的想法。關鍵就是要證明'至少還有一對自然數未被篩去'。目前世界上誰都未能對這一部分加以證明。要能證明,這個猜想也就解决了。
  然而,因大偶數n(不小於6)等於其對應的奇數數列(首為3,尾為n-3)首尾挨次搭配相加的奇數之和。故根據該奇數之和以相關類型質數+質數(1+1)或質數+合數(1+2)(含合數+質數2+1或合數+合數2+2)(註:1+2 或 2+1 同屬質數+合數類型)在參與無限次的"類別組合"時,所有可發生的種種有關聯繫即1+1或1+2完全一致的出現,1+1與1+2的交叉出現(不完全一致的出現),同2+1或2+2的"完全一致",2+1與2+2的"不完全一致"等情況的排列組合所形成的各有關聯繫,就可導出的"類別組合"為1+1,1+1與1+2和2+2,1+1與1+2,1+2與2+2,1+1與2+2,1+2等六種方式。因為其中的1+2與2+2,1+2 兩種"類別組合"方式不含1+1。所以1+1沒有覆蓋所有可形成的"類別組合"方式,即其存在是有交替的,至此,若可將1+2與2+2,以及1+2兩種方式的存在排除,則1+1得證,反之,則1+1不成立得證。然而事實卻是:1+2 與2+2,以及1+2(或至少有一種)是陳氏定理中(任何一個充分大的偶數都可以表示為兩個素數的和,或一個素數與兩個素數乘積的和),所揭示的某些規律(如1+2的存在而同時有1+1缺失的情況)存在的基礎根據。所以1+2與2+2,以及1+2(或至少有一種)"類別組合"方式是確定的,客觀的,也即是不可排除的。所以1+1成立是不可能的。這就徹底論證了布朗篩法不能證"1+1"。
  由於素數本身的分佈呈現無序性的變化,素數對的變化同偶數值的增長二者之間不存在簡單正比例關係,偶數值增大時素數對值忽高忽低。能通過數學關係式把素數對的變化同偶數的變化聯繫起來嗎?不能!偶數值與其素數對值之間的關係沒有數量規律可循。二百多年來,人們的努力證明了這一點,最後選擇放棄,另找途徑。於是出現了用別的方法來證明哥德巴赫猜想的人們,他們的努力,衹使數學的某些領域得到進步,而對哥德巴赫猜想證明沒有一點作用。
  哥德巴赫猜想本質是一個偶數與其素數對關係,表達一個偶數與其素數對關係的數學表達式,是不存在的。它可以從實踐上證實,但邏輯上無法解决個別偶數與全部偶數的矛盾。個別如何等於一般呢?個別和一般在質上同一,量上對立。矛盾永遠存在。哥德巴赫猜想是永遠無法從理論上,邏輯上證明的數學結論。
陳氏定理
  陳氏定理是中國數學家陳景潤於1966年發表,1973年公佈詳細證明方法。這個定理證明任何一個足夠大的偶數都可以表示成一個素數和一個半素數的和,也就是我們通常所說的“1+2”。
  1742年德國人哥德巴赫給當時住在俄國彼得堡的大數學家歐拉寫了一封信,在信中提出兩個問題:第一,是否每個大於4的偶數都能表示為兩個奇質數之和?如6=3+3,14=3+11等。第二,是否每個大於7的奇數都能表示3個奇質數之和?如9=3+3+3,15=3+5+7等。這就是著名的哥德巴赫猜想。
哥德巴赫猜想
  當年徐遲的一篇報告文學,中國人知道了陳景潤和哥德巴赫猜想。
  那麽,什麽是哥德巴赫猜想呢?
  哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(衹能被1和它本身整除的數)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,提出了以下的猜想:
  (a)任何一個≥6之偶數,都可以表示成兩個奇質數之和。
  (b) 任何一個≥9之奇數,都可以表示成三個奇質數之和。
  用當代語言來敘述,哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個奇素數的和。偶數的猜想是說,大於等於6的偶數一定是兩個奇素數的和。
  實際上第一個問題的正確解法可以推出第二個問題的正確解法,因為每個大於 7的奇數顯然可以表示為一個大於4的偶數與3的和。1937年,蘇聯數學家維諾格拉多夫利用他獨創的“三角和”方法證明了每個充分大的奇數可以表示為3個奇質數之和,基本上解决了第二個問題。但是第一個問題至今仍未解决。
  這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的註意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻剋它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。
  從此,這道著名的數學難題引起了世界上成千上萬數學家的註意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可即的"明珠"。 人們對哥德巴赫猜想難題的熱情,歷經兩百多年而不衰。世界上許許多多的數學工作者,殫精竭慮,費盡心機,然而至今仍不得其解。
“s+t”問題
  到了20世紀20年代,纔有人開始嚮哥德巴赫猜想靠近。1920年挪威數學家布朗用一種古老的篩選法證明,得出了一個結論:每一個比較大的偶數都可以表示為九個質數的積加上九個質數的積,簡稱9+9。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數裏所含質數因子的個數,直到最後使每個數裏都是一個質數為止,這樣就證明了哥德巴赫猜想。
  目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理:“任何充分大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。”通常都簡稱這個結果為大偶數可表示為 “1 + 2”的形式。
  在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱“s + t”問題)之進展情況如下:
  1920年,挪威的布朗證明了‘“9 + 9”。
  1924年,德國的拉特馬赫證明了“7 + 7”。
  1932年,英國的埃斯特曼證明了“6 + 6”。
  1937年,意大利的蕾西先後證明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
  1938年,蘇聯的布赫夕太勃證明了“5 + 5”。
  1940年,蘇聯的布赫夕太勃證明了“4 + 4”。
  1948年,匈牙利的瑞尼證明了“1 + c”,其中c是一很大的自然數。
  1956年,中國的王元證明了“3 + 4”。
  1957年,中國的王元先後證明了 “3 + 3”和“2 + 3”。
  1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了“1 + 5”, 中國的王元證明了“1 + 4”。
  1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及 意大利的朋比利證明了“1 + 3 ”。
  1966年,中國的陳景潤證明了 “1 + 2 ”。
  由於陳景潤的貢獻,人類距離哥德巴赫猜想的最後結果“1+1”僅有一步之遙了。但為了實現這最後的一步,也許還要歷經一個漫長的探索過程。有許多數學家認為,要想證明“1+1”,必須通過創造新的數學方法,以往的路很可能都是走不通的。
  從1920年布朗證明"9+9"到1966年陳景潤攻下“1+2”,歷經46年。自"陳氏定理"誕生至今的30多年裏,人們對哥德巴赫猜想猜想的進一步研究,均勞而無功。
  布朗篩法的思路是這樣的:即任一偶數(自然數)可以寫為2n,這裏n是一個自然數,2n可以表示為n個不同形式的一對自然數之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在篩去不適合哥德巴赫猜想結論的所有那些自然數對之後(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能夠證明至少還有一對自然數未被篩去,例如記其中的一對為p1和p2,那麽p1和p2都是素數,即得n=p1+p2,這樣哥德巴赫猜想就被證明了。前一部分的敘述是很自然的想法。關鍵就是要證明'至少還有一對自然數未被篩去'。目前世界上誰都未能對這一部分加以證明。要能證明,這個猜想也就解决了。
  然而,因大偶數n(不小於6)等於其對應的奇數數列(首為3,尾為n-3)首尾挨次搭配相加的奇數之和。故根據該奇數之和以相關類型質數+質數(1+1)或質數+合數(1+2)(含合數+質數2+1或合數+合數2+2)(註:1+2 或 2+1 同屬質數+合數類型)在參與無限次的"類別組合"時,所有可發生的種種有關聯繫即1+1或1+2完全一致的出現,1+1與1+2的交叉出現(不完全一致的出現),同2+1或2+2的"完全一致",2+1與2+2的"不完全一致"等情況的排列組合所形成的各有關聯繫,就可導出的"類別組合"為1+1,1+1與1+2和2+2,1+1與1+2,1+2與2+2,1+1與2+2,1+2等六種方式。因為其中的1+2與2+2,1+2 兩種"類別組合"方式不含1+1。所以1+1沒有覆蓋所有可形成的"類別組合"方式,即其存在是有交替的,至此,若可將1+2與2+2,以及1+2兩種方式的存在排除,則1+1得證,反之,則1+1不成立得證。然而事實卻是:1+2 與2+2,以及1+2(或至少有一種)是陳氏定理中(任何一個充分大的偶數都可以表示為兩個素數的和,或一個素數與兩個素數乘積的和),所揭示的某些規律(如1+2的存在而同時有1+1缺失的情況)存在的基礎根據。所以1+2與2+2,以及1+2(或至少有一種)"類別組合"方式是確定的,客觀的,也即是不可排除的。所以1+1成立是不可能的。這就徹底論證了布朗篩法不能證"1+1"。實際上:
  (註:下面的的五條結論來自非官方,僅供討論)
  一。陳景潤證明的不是哥德巴赫猜想
  陳景潤與邵品宗合著的【哥德巴赫猜想】第118頁(遼寧教育出版社)寫道:陳景潤定理的“1+1”結果,通俗地講是指:對於任何一個大偶數N,那麽總可以找到奇素數P',P",或者P1,P2,P3,使得下列兩式至少一式成立:“
  N=P'+P" (A)
  N=P1+P2*P3 (B)
  當然並不排除(A)(B)同時成立的情形,例如62=43+19,62=7+5X11。”
  衆所周知,哥德巴赫猜想是指對於大於4的偶數(A)式成立,【1+2】是指對於大於10的偶數(B)式成立,
  兩者是不同的兩個命題,陳景潤把兩個毫不相關的命題混為一談,並在申報奬項時偷換了概念(命題),陳景潤也沒有證明【1+2】,因為【1+2】比【1+1】難得多。
  二。 陳景潤使用了錯誤的推理形式
  陳采用的是相容選言推理的“肯定肯定式”:或者A,或者B,A,所以或者A或B,或A與B同時成立。 這是一種錯誤的推理形式,模棱兩可,牽強附會,言之無物,什麽也沒有肯定,正如算命先生那樣“:李大嫂分娩,或者生男孩,或者生女孩,或者同時生男又生女(多胎)”。無論如何都是對的,這種判斷在認識論上稱為不可證偽,而可證偽性是科學與偽科學的分界。相容選言推理衹有一種正確形式。否定肯定式:或者A,或者B,非A,所以B。相容選言推理有兩條規則:1,否認一部分選言肢,就必須肯定另一部分選言肢;2,肯定一部分選言肢卻不能否定另一部份選言肢。可見對陳景潤的認可表明中國數學會思維混亂,缺乏基本的邏輯訓練。
  三。 陳景潤大量使用錯誤概念
  陳在論文中大量使用“充分大”和“殆素數”這兩個含糊不清的概念。而科學概念的特徵就是:精確性,專義性,穩定性,係統性,可檢驗性。“殆素數”指很像素數,拿像與不像來論證,這是小孩的遊戲。而“充分大”,陳指10的50萬次方,這是不可檢驗的數。
  四。陳景潤的結論不能算定理
  陳的結論采用的是特稱(某些,一些),即某些N是(A),某些N是(B),就不能算定理,因為所有嚴格的科學的定理,定律都是以全稱(所有,一切,全部,每個)命題形式表現出來,一個全稱命題陳述一個給定類的所有元素之間的一種不變關係,適用於一種無窮大的類,它在任何時候都無區別的成立。而陳景潤的結論,連概念都算不上。
  五。陳景潤的工作嚴重違背認識規律
  在沒有找到素數普篇公式之前,哥氏猜想是無法解决的,正如化圓為方取决於圓周率的超越性是否搞清,事物質的規定性决定量的規定性。(王曉明 《中華傳奇》雜志(哥德巴赫猜想傳奇)1999年3期)
  由於素數本身的分佈呈現無序性的變化,素數對的變化同偶數值的增長二者之間不存在簡單正比例關係,偶數值增大時素數對值忽高忽低。能通過數學關係式把素數對的變化同偶數的變化聯繫起來嗎?不能!偶數值與其素數對值之間的關係沒有數量規律可循。二百多年來,人們的努力證明了這一點,最後選擇放棄,另找途徑。於是出現了用別的方法來證明哥德巴赫猜想的人們,他們的努力,衹使數學的某些領域得到進步,而對哥德巴赫猜想證明沒有一點作用。
  哥德巴赫猜想本質是一個偶數與其素數對關係,表達一個偶數與其素數對關係的數學表達式,是不存在的。它可以從實踐上證實,但邏輯上無法解决個別偶數與全部偶數的矛盾。個別如何等於一般呢?個別和一般在質上同一,量上對立。矛盾雖然存在,但是遲早哥德巴赫猜想會在理論上得到證實,衹要我們一同努力不久的將來就會成為一條真正的定理。
  人們發現,如果去掉殆素數,(1+2)比(1+1)睏難的多。(1+3)比(1+2)睏難的多。
  (1+1)是大於第一個素數“2”的1次方加1的偶數(即n>2+1)都是一個素數加上一個素數之和。
  (1+2)是大於第二個素數“3”的2次方加1的偶數(即n〉3x3+1=10)都是一個素數加上二個素數乘積之和。例如12=3×3+3。
  (1+3)是大於第三個素數“5”的3次方加1的偶數(即n〉5x5x5+1=126)都是一個素數加上三個素數乘積之和。例如128=5x5x5+3=5x5x3+53。小於128的偶數有21個不能夠表示為(1+3),例如,4,6,8,10,12,14,16,18,20,22,24,26,28,36,42,54,72,96,114,120,126。
  (1+4)是大於第四個素數“7”的4次方加1的偶數(即n〉7x7x7x7+1=2042)都是一個素數加上四個素數乘積之和。例如2044=2041+3。小於2044的偶數有幾百個不能夠表示(1+4)。
  這是因為自然數數值越小,含素數個數多的合數越少。例如,100以內,有25個素數,有含2個素數因子的奇合數18個,含3個素數因子的合數有5個(27,45,63,75,99),含4個素數因子的合數僅1個(81)。實際上,哥德巴赫猜想衹是這一類問題中難度最底端的問題。許多艱難的問題正等待人們去剋服。
  [哥德巴赫猜想的意義]
  【一個人要想發現卓有成效的真理,需要千百萬人在失敗的探索和悲慘的錯誤中毀滅自己的生命。——門捷列夫】
  8。哥德巴赫猜想的意義
  一件事物之所以引起人們的興趣,因為我們關心他,假如一個問題的解决絲毫不能引起人類的快感,我們就會閉上眼睛,假如這個問題對我們的知識毫無幫助,我們就會認為它沒有價值,假如這件事情不能引起正義和美感,情操和熱情就無法驗證。
  哥德巴赫猜想是數的一種表現次序,人們持久地愛好它,是因為如果沒有這種次序,人們就會喪失對更深刻問題的信念——因為無序是對美的致命傷,假如哥德巴赫猜想是錯誤的,它將限製我們的觀察能力。使我們難以跨越一些問題並無法欣賞。一個問題把它無序的一面強加給我們的內心生活,就會使我們的感受趨嚮醜陋,引起自卑和傷感。哥德巴赫猜想實際是說,任何一個大於3的自然數n.都有一個x, 使得n+x與n-x都是素數,因為,(n+x)+(n-x)=2n.這是一種素數對自然數形式的對稱,代表一種秩序,它之所以意味深長,是因為素數這種似乎雜亂無章的東西被人們用自然數n對稱地串聯起來,正如牧童一聲口稍就把滿山遍野亂跑的羊群喚在一起,它使人心晃神移,又像生物基因DNA,呈雙蠃旋結構繞自然數n轉動,人們從玄虛的素數看到了純樸而又充滿青春的一面。對稱不僅是視覺上的美學概念,它意味着對象的統一。
  素數具有一種浪漫的氣質,它以神秘的魅力産生一種不定型的朦朧,相比之下,圓周率,自然對數。虛數。費肯鮑姆數就顯得單純多了,歐拉曾用一個公式把它們統一起來。而素數給人們更多的悲劇色彩,有一種神聖不可侵犯的冷漠。當哥德巴赫猜想變成定理,我們可以看到上帝的大智大慧,乘法是加法的重疊,而哥德巴赫猜想卻用加法將乘性概括。在這隱晦的命題之中有着深奧的知識。它改變人們對數的看法:乘法的輪郭憑直觀就可以一目瞭然,哥德巴赫猜想體現一種探索機能,貴賤之別是顯然的,加法和乘法都是數量的堆積,但乘法是對加法的概括,加法對乘性的控製卻體現了兩種不同的要求,前者通過感受可以領悟,後者則要求靈感——人性和哲學。靜觀前者而神往於它的反面(後者),這理想的境界變成了百年的信仰和反思,反思的特殊價值在於滿足了深層的好奇,是一切重大發現的精神通路,例如錄音是對發音的反思結果,磁生電是對電生磁的反思結果。。。。順思與反思是一種對稱,表明一種活力與生機。順思是自然的,反思是主動的,順思産生經驗,反思才能産生科學。順思的內容常常是淺表的公開的,已知的。反思的內容常常是隱蔽的,未知的。反思不是簡單的衷情回顧不是對經驗的眷念,而是尋找事物本質的終極標準——-對歷史真相或事物真相的揭示。
  哥德巴赫猜想為什麽會吸引人?世界上絶對沒有客觀方面能打動人的事物和因素。一件事之所以會吸引人,那是因為它具有某種特質能震動觀察者的感受力,感受力的大小即觀察者的素質。感人的東西往往是開放的。給人以無限遐思和暗示。哥德巴赫猜想以一種表面開朗簡潔的形式掩蓋它陰險的本質。他周圍籠罩着一種強烈的朦朧氣氛。他以喜劇的方式挑逗人們開場,卻無一例外以悲劇的形式謝幕。他溫文爾雅地拒絶一切嚮她求愛的人們,讓追求者爭風吃醋,大打出手,自己卻在一旁看着一場有一場拙劣的表演。哥氏猜想以一種抽象的美讓人們想入非非,他營造一種仙境,挑起人們的欲望和野心,讓那些以為有點才能的人勞苦、煩惱、憤怒中死亡。他恣意橫行於人類精神的海洋,讓智慧的小船難以駕馭,讓科研的‘泰坦尼剋’一次又一次沉沒。。。
  人類的精神威信建立在科學對迷信和無知的勝利之上,人類的群體的精神健康依賴於一種自信,衹有自信才能導入完美的信念使理想進入未來中,完美的信念使人生的辛勞和痛苦得以減輕,這樣任何驚心動魄的災難,蕩氣回腸的悲愴都難以摧毀人的信念,衹有感到無能時,信念纔會土崩瓦解。肉體在空虛的靈魂誘導之下融入畜類,人類在失敗中引發自卑。哥德巴赫猜想的哲學意義正在如此。
  時代在等待名垂千古的英雄。
  【魔鬼探源】素數充滿了玄妙,它能把復雜的事物說得簡單明了,也能把簡單明了的事物變得復雜。前者靠直覺和洞察,後者靠聯想和推理。素數是數學世界最風騷的舞女,是數學場上的交際花和狐狸精,它主宰着數論的秘密女王,,它是妖精的化身。照亮數論四周,像吸血鬼一樣獲得永生。而數學家則在它四周衰竭而亡。