天文 : 數理化 > 超光速
目錄
No. 1
  超光速(faster-than-light, ftl或稱superluminality)會成為一個討論題目,源自於相對論中對於局域物體不可超過真空中光速c的推論限製,光速成為許多場合下速率的上限值。在此之前的牛頓力學並未對超光速的速度作出限製。而在相對論中,運動速度和物體的其它性質,如質量甚至它所在參考係的時間流逝等,密切相關,速度低於(真空中)光速的物體如果要加速達到光速,其質量會增長到無窮大因而需要無窮大的能量,而且它所感受到的時間流逝甚至會停止(如果超過光速則會出現“時間倒流”),所以理論上來說達到或超過光速是不可能的(至於光子,那是因為它們永遠處於光速,而不是從低於光速增加到光速)。但也因此使得物理學家(以及普通大衆)對於一些“看似”超光速的物理現象特別感興趣。
  超光速存在嗎?
  2000年7月,由於英國《自然》(nature,2000,406:277)雜志發表了一篇關於“超光速”實驗的論文,引起了人們對超光速倒底是否存在的討論。其實對在介質中使光脈衝的群速度超過真空中光速c, 科學家們早有研究,而nature中報道的這個實驗就是實現了這種想法。但是這並非是人們想象的那種所謂違反因果律(或者相對論)的超光速,為了說明這個問題,讓我們看一看由華人科學家王力軍所做的這個實驗。
  光脈衝是由不同頻率、振幅、相位的光波組成的波包,光脈衝的每個成分的速度稱為相速度,波包峰的速度稱為群速度。在真空中二者是相同的,但是在介質中如我們所知道的存在如下的群速度與介質。
  折射率的關係:
  vg = c / ng , ng = n + ω(dn/dω)
  顯然在一定的情況下(如反常色散很強的介質)可以出現負的群速度,此時,光脈衝在介質中傳播比真空中花的時間短,其差Δt = (l/v) - (l/c)達到絶對值足夠大時就可以觀察到“超光速”現象,即“光脈衝峰值進入介質以前,在另一邊已經有脈衝峰出射了”(由王力軍原文譯)。
  那麽這種超光速是不是違背因果率呢?我們仔細考查王的實驗就會發現,出射光脈衝雖然是在入射脈衝峰值進入介質之前出現的,但在這之前入射脈衝的前沿早已進入介質了(如圖),因此出射脈衝可以看作是由入射脈衝前沿與介質相互作用産生 的。其實王的實驗重要意義正在於實現了可觀測的負群速度的這一現象,而不是像媒體炒作的那樣發現了什麽“超光速”,負的群速度在這裏就不能理解為光的速度了,它也不是能量傳輸的速度。當然,這一實驗本身就說明我們人類對光的認識又前進了一步。對這個實驗的解釋衹憑折射率與群速度的關係這個公式是遠遠不夠的,這其中包含了量子干涉的效應,涉及到對光的本質的認識,揭開蒙在“超光速實驗”頭上的面紗,仍然是科學家們奮鬥的目標。
  很多人在瞭解了這個實驗後就會想到能否用這種“超光速”效應來傳遞信息,在王的實驗中,“超光速”的脈衝不能攜帶有用的信息,因此也就無從談起信息的超光速傳遞,同樣能量的超光速傳輸也是不行的。
  與超光速實驗具有相同轟動效應的是另一種“超光速”現象
  quantum teleportation即量子超空間傳輸(或量子隱形傳態),這個奇妙的現象因其與量子信息傳遞及量子計算機的實現有密切聯繫而引起人們的關註。所謂超空間,就是量子態的傳輸不是在我們通常的空間進行,因此就不會受光速極限的製約,瞬時地使量子態從甲地傳輸到乙地(實際上是甲地粒子的量子態信息被提取瞬時地在乙地粒子上再現),這種量子信息的傳遞是不需要時間的,是真正意義的超光速(也可理解為超距作用)。在量子超空間傳輸的過程中,遵循量子不可剋隆定律,通過量子糾纏態使甲乙粒子發生關聯,量子態的確定通過量子測量來進行,因此當甲粒子的量子態被探測後甲乙兩粒子瞬時塌縮到各自的本徵態,這時乙粒子的態就包含了甲粒子的信息。這種信息的傳遞是“超光速”的。
  但是,如果一位觀測者想要馬上知道傳送的信息是什麽,這是不可能的,因為此時粒子乙仍處於量子疊加態,對它的測量不能得到完全的信息,我們必須知道對甲粒子采取了什麽測量,所以不得不通過現實的信息傳送方式(如電話,網絡等)告訴乙地的測量者甲粒子此時的狀態。最終,我們獲得信息的速度還是不能超過光速!量子超空間傳輸的實驗已在1997年實現了(見nature,390,575.1997)。
  以上兩個超光速的方案目前還衹處於理論探討和實驗階段,離實用還有很遠的距離,而且這兩個問題都涉及到物理學的本質,實驗現象及其解釋都在爭論之中。
  相對論問答——超光速人們所感興趣的超光速,一般是指超光速傳遞能量或者信息。根據狹義相對論,這種意義下的超光速旅行和超光速通訊一般是不可能的。目前關於超光速的爭論,大多數情況是某些東西的速度的確可以超過光速,但是不能用它們傳遞能量或者信息。但現有的理論並未完全排除真正意義上的超光速的可能性。
  首先討論第一種情況:並非真正意義上的超光速
  1.切倫科夫效應
  媒質中的光速比真空中的光速小。粒子在媒質中的傳播速度可能超過媒質中的光速。在這種情況下會發生輻射,稱為切侖科夫效應。這不是真正意義上的超光速,真正意義上的超光速是指超過真空中的光速。
  2.第三觀察者
  如果a相對於c以0.6c的速度嚮東運動,b相對於c以0.6c的速度嚮西運動。對於c來說,a和b之間的距離以1.2c的速度增大。這種“速度”--兩個運動物體之間相對於第三觀察者的速度--可以超過光速。但是兩個物體相對於彼此的運動速度並沒有超過光速。在這個例子中,在a的坐標係中b的速度是0.88c。在b的坐標係中a的速度也是0.88c。
  3.影子和光斑
  在燈下晃動你的手,你會發現影子的速度比手的速度要快。影子與手晃動的速度之比等於它們到燈的距離之比。如果你朝月球晃動手電筒,你很容易就能讓落在月球上的光斑的移動速度超過光速。遺憾的是,不能以這種方式超光速地傳遞信息。
  4.剛體
  敲一根棍子的一頭,振動會不會立刻傳到另一頭?這豈不是提供了一種超光速通訊方式?很遺憾,理想的剛體是不存在的,振動在棍子中的傳播是以聲速進行的,而聲速歸根結底是電磁作用的結果,因此不可能超過光速。(一個有趣的問題是,竪直地拎着一根棍子的上端,突然鬆手,是棍子的上端先開始下落還是棍子的下端先開始下落?答案是上端。)
  5.相速度
  光在媒質中的相速度在某些頻段可以超過真空中的光速。相速度是指連續的(假定信號已傳播了足夠長的時間,達到了穩定狀態)的正弦波在媒質中傳播一段距離後的相位滯後所對應的“傳播速度”。很顯然,單純的正弦波是無法傳遞信息的。要傳遞信息,需要把變化較慢的波包調製在正弦波上,這種波包的傳播速度叫做群速度,群速度是小於光速的。(譯者註:索末菲和布裏淵關於脈衝在媒質中的傳播的研究證明了有起始時間的信號[在某時刻之前為零的信號]在媒質中的傳播速度不可能超過光速。)
  6.超光速星係
  朝我們運動的星係的視速度有可能超過光速。這是一種假象,因為沒有修正從星係到我們的時間的減少。
  舉一個例子:假如我們測量一個目前離我們10光年的星係,它的運動速度為2/3 c。
  現在測量,測出的距離卻是30光年,因為它當時發出的光到時,星係恰到達10光年處;
  3年後,星係到了8光年處,那末視距離為8光年的3倍,即24光年。
  結果,3年中,視距離減小了6光年……
  7.相對論火箭
  地球上的人看到火箭以0.8c的速度遠離,火箭上的時鐘相對於地球上的人變慢,是地球時鐘的0.6倍。如果用火箭移動的距離除以火箭上的時間,將得到一個“速度”是4/3 c。因此,火箭上的人是以“相當於”超光速的速度運動。對於火箭上的人來說,時間沒有變慢,但是星係之間的距離縮小到原來的0.6倍,因此他們也感到是以相當於4/3 c的速度運動。這裏問題在於這種用一個坐標係的距離除以另一個坐標係中的時間所得到的數不是真正的速度。
  8.萬有引力傳播的速度
  有人認為萬有引力的傳播速度超過光速。實際上萬有引力以光速傳播。
  9.epr悖論
  1935年einstein,podolski和rosen發表了一個思想實驗試圖表明量子力學的不完全性。他們認為在測量兩個分離的處於entangled state的粒子時有明顯的超距作用。ebhard證明了不可能利用這種效應傳遞任何信息,因此超光速通信不存在。但是關於epr悖論仍有爭議。
  10.虛粒子
  在量子場論中力是通過虛粒子來傳遞的。由於海森堡不確定性這些虛粒子可以以超光速傳播,但是虛粒子衹是數學符號,超光速旅行或通信仍不存在。
  11.量子隧道
  量子隧道是粒子逃出高於其自身能量的勢壘的效應,在經典物理中這種情況不可能發生。計算一下粒子穿過隧道的時間,會發現粒子的速度超過光速。
  ref: t. e. hartman, j. appl. phys. 33, 3427 (1962)
  一群物理學家做了利用量子隧道效應進行超光速通信的實驗:他們聲稱以4.7c的速度穿過11.4cm寬的勢壘傳輸了莫紮特的第40交響麯。當然,這引起了很大的爭議。大多數物理學家認為,由於海森堡不確定性,不可能利用這種量子效應超光速地傳遞信息。如果這種效應是真的,就有可能在一個高速運動的坐標係中利用類似裝置把信息傳遞到過去。
  ref: w. heitmann and g. nimtz, phys lett a196, 154 (1994); a. enders and g. nimtz, phys rev e48, 632 (1993)
  terence tao認為上述實驗不具備說服力。信號以光速通過11.4cm的距離用不了0.4納秒,但是通過簡單的外插就可以預測長達1000納秒的聲信號。因此需要在更遠距離上或者對高頻隨機信號作超光速通信的實驗。
  12 卡西米(casimir)效應
  當兩塊不帶電荷的導體板距離非常接近時,它們之間會有非常微弱但仍可測量的力,這就是卡西米效應。卡西米效應是由真空能(vacuum energy)引起的。scharnhorst的計算表明,在兩塊金屬板之間橫嚮運動的光子的速度必須略大於光速(對於一納米的間隙,這個速度比光速大10-24)。在特定的宇宙學條件下(比如在宇宙弦(cosmicstring)的附近[假如它們存在的話]),這種效應會顯著得多。但進一步的理論研究表明不可能利用這種效應進行超光速通信。
  ref: k. scharnhorst, physics letters b236, 354 (1990) s. ben-menahem, physics letters b250, 133 (1990) andrew gould (princeton, inst. advanced study). iassns-ast-90-25barton & scharnhorst, j phys a26, 2037 (1993)
  13.宇宙膨脹
  哈勃定理說:距離為d的星係以hd的速度分離。h是與星係無關的常數,稱為哈勃常數。距離足夠遠的星係可能以超過光速的速度彼此分離,但這是相對於第三觀察者的分離速度。
  14.月亮以超光速的速度繞着我旋轉!
  當月亮在地平綫上的時候,假定我們以每秒半周的速度轉圈兒,因為月亮離我們385,000公裏,月亮相對於我們的旋轉速度是每秒121萬公裏,大約是光速的四倍多!這聽起來相當荒謬,因為實際上是我們自己在旋轉,卻說是月亮繞這我們轉。但是根據廣義相對論,包括旋轉坐標係在內的任何坐標係都是可用的,這難道不是月亮以超光速在運動嗎?
  問題在於,在廣義相對論中,不同地點的速度是不可以直接比較的。月亮的速度衹能與其局部慣性係中的其他物體相比較。實際上,速度的概念在廣義相對論中沒多大用處,定義什麽是“超光速”在廣義相對論中很睏難。在廣義相對論中,甚至“光速不變”都需要解釋。愛因斯坦自己在《相對論:狹義與廣義理論》第76頁說“光速不變”並不是始終正確的。當時間和距離沒有絶對的定義的時候,如何確定速度並不是那麽清楚的。
  儘管如此,現代物理學認為廣義相對論中光速仍然是不變的。當距離和時間單位通過光速聯繫起來的時候,光速不變作為一條不言自明的公理而得到定義。在前面所說的例子中,月亮的速度仍然小於光速,因為在任何時刻,它都位於從它當前位置發出的未來光錐之內。
  15.明確超光速的定義
  第一部份列舉的各種似是而非的“超光速”例子表明了定義“超光速”的睏難。象影子和光斑的“超光速”不是真正意義的超光速,那麽,什麽是真正意義上的超光速呢?
  在相對論中“世界綫”是一個重要概念,我們可以藉助“世界綫”來給“超光速”下一個明確定義。
  什麽是“世界綫”?我們知道,一切物體都是由粒子構成的,如果我們能夠描述粒子在任何時刻的位置,我們就描述了物體的全部“歷史”。想象一個由空間的三維加上時間的一維共同構成的四維空間。由於一個粒子在任何時刻衹能處於一個特定的位置,它的全部“歷史”在這個四維空間中是一條連續的麯綫,這就是“世界綫”。一個物體的世界綫是構成它的所有粒子的世界綫的集合。
  不光粒子的歷史可以構成世界綫,一些人為定義的“東西”的歷史也可以構成世界綫,比如說影子和光斑。影子可以用其邊界上的點來定義。這些點並不是真正的粒子,但它們的位置可以移動,因此它們的“歷史”也構成世界綫。
  四維時空中的一個點表示的是一個“事件”,即三個空間坐標加上一個時間坐標。任何兩個“事件”之間可以定義時空距離,它是兩個事件之間的空間距離的平方減去其時間間隔與光速的乘積的平方再開根號。狹義相對論證明了這種時空距離與坐標係無關,因此是有物理意義的。
  時空距離可分三類:類時距離:空間間隔小於時間間隔與光速的乘積類光距離:空間間隔等於時間間隔與光速的乘積類空距離:空間間隔大於時間間隔與光速的乘積
  下面我們需要引入“局部”的概念。一條光滑麯綫,“局部”地看,非常類似一條直綫。類似的,四維時空在局部是平直的,世界綫在局部是類似直綫的,也就是說,可以用勻速運動來描述,這個速度就是粒子的瞬時速度。
  光子的世界綫上,局部地看,相鄰事件之間的距離都是類光的。在這個意義上,我們可以把光子的世界綫說成是類光的。
  任何以低於光速的速度運動的粒子的世界綫,局部的看,相鄰事件之間的距離都是類時的。在這個意義上,我們可以把這種世界綫說成是類時的。
  而以超光速運動的粒子或人為定義的“點”,它的世界綫是類空的。這裏說世界綫是類空的,是指局部地看,相鄰事件的時空距離是類空的。
  因為有可能存在彎麯的時空,有可能存在這樣的世界綫:局部地看,相鄰事件的距離都是類時的,粒子並沒有超光速運動;但是存在相距很遠的兩個事件,其時空距離是類空的。這種情況算不算超光速呢?
  這個問題的意義在於說明既可以定義局部的“超光速”,也可以定義全局的“超光速”。即使局部的超光速不可能,也不排除全局超光速的可能性。全局超光速也是值得討論的。
  總而言之,“超光速”可以通過類空的世界綫來定義,這種定義的好處是排除了兩個物體之間相對於第三觀察者以“超光速”運動的情況。
  下面來考慮一下什麽是我們想超光速傳送的“東西”,主要目的是排除“影子”和“光斑”之類沒用的東西。粒子、能量、電荷、自旋、信息是我們想傳送的。有一個問題是:我們怎麽知道傳送的東西還是原來的東西?這個問題比較好辦,對於一個粒子,我們觀察它的世界綫,如果世界綫是連續的,而且沒有其他粒子從這個粒子分離出來,我們就大體可以認為這個粒子還是原來那個粒子。
  顯然,傳送整個物體從技術上來講要比傳送信息睏難得多。現在我們已經可以毫無睏難地以光速傳遞信息。從本質上講,我們衹是做到了把信息放到光子的時間序列上去和從光子的時間序列中重新得到人可讀的信息,而光子的速度自然就是光速。
  類似地,假如快子(tachyons,理論上預言的超光速粒子)真的存在的話,我們衹需要發現一種能夠控製其産生和發射方向的技術,就可以實現超光速通信。
  極其可能的是,傳送不同的粒子所需要的代價是極其不同的,更經濟的辦法是采用復製技術。假如我們能夠得到關於一個物體的全部信息,並且我們掌握了從這些信息復製原物體的技術,那麽超光速通信與超光速旅行是等價的。
  科幻小說早就有這個想法了,稱之為遠距離傳真(teleport)。簡單的說,就是象傳真一樣把人在那邊復製一份,然後把這邊的原件銷毀,就相當於把人傳過去了。當然問題是象人這種有意識的復雜物體能否復製。
  16.無限大的能量
  e = mc^2/sqrt(1 - v^2/c^2)
  上述公式是靜止質量為m的粒子以速度v運動時所具有的能量。
  很顯然,速度越高能量越大。因此要使粒子加速必須要對它做功,做的功等於粒子能量的增加。
  註意當v趨近於c時,能量趨於無窮大,因此以通常加速的方式使粒子達到光速是不可能的,更不用說超光速了。
  但是這並沒有排除以其他方式使粒子超光速的可能性。
  粒子可以衰變成其他粒子,包括以光速運動的光子(光子的靜止質量為零,因此雖以光速運動,其能量也可以是有限值,上述公式對光子無效)。衰變過程的細節無法用經典物理學來描述,因此我們無法否定通過衰變産生超光速粒子的可能性(?)。
  另一種可能性是速度始終高於光速的粒子。既然有始終以光速運動的光子,有始終以低於光速的速度運動的粒子,為什麽不會有始終以高於光速的速度運動的粒子呢?
  問題是,如果在上述公式中v>c,要麽能量是虛數,要麽質量是虛數。假如存在這樣的粒子,虛數的能量與質量有沒有物理意義呢?應該如何解釋它們的意義?能否推出可觀測的預言?
  衹要找到這種粒子存在的證據,找到檢測這種粒子的方法,找到使這種粒子的運動發生偏轉的方法,就能實現超光速通信。
  17.量子場論
  到目前為止,除引力外的所有物理現象都符合粒子物理的標準模型。標準模型是一個相對論量子場論,它可以描述包括電磁相互作用、弱相互作用、強相互作用在內的三種基本相互作用以及所有已觀測到的粒子。根據這個理論,任何對應於兩個在有類空距離的事件處所作物理觀測的算子是對易的(any pair of operators corresponding to physical observables at space-time events which are separated by a space like interval commute)。原則上講,這意味着任何作用不可能以超過光速的速度傳播。
  但是,沒有人能證明標準模型是自洽的(self-consistent)。很有可能它實際上確實不是自洽的。無論如何,它不能保證將來不會發現它無法描述的粒子或相互作用。也沒有人把它推廣到包括廣義相對論和引力。很多研究量子引力的人懷疑關於因果性和局域性的如此簡單的表述能否作這樣的推廣。總而言之,在將來更完善的理論中,無法保證光速仍然是速度的上限。
  18.祖父悖論(因果性)
  反對超光速的最好證據恐怕莫過於祖父悖論了。根據狹義相對論,在一個參考係中超光速運動的粒子在另一坐標係中有可能回到過去。因此超光速旅行和超光速通信也意味着回到過去或者嚮過去傳送信息。如果時間旅行是可能的,你就可以回到過去殺死你自己的祖父。這是對超光速強有力的反駁。但是它不能排除這種可能性,即我們可能作有限的超光速旅行但不能回到過去。另一種可能是當我們作超光速旅行時,因果性以某種一致的方式遭到破壞。
  總而言之,時間旅行和超光速旅行不完全相同但有聯繫。如果我們能回到過去,我們大體上也能實現超光速旅行。
  第三部份:未定論的超光速的可能性
  19.快子(tachyon)
  快子是理論上預言的粒子。它具有超過光速的局部速度(瞬時速度)。它的質量是虛數,但能量和動量是實數。有人認為這種粒子無法檢測(譯註:那這種預言有什麽意義:-)),但實際未必如此。影子和光斑的例子就說明超過光速的東西也是可以觀測到的。
  目前尚無快子存在的實驗證據,絶大多數人懷疑它們的存在。有人聲稱在測tritium貝塔衰變放出的中微子質量的實驗中有證據表明這些中微子是快子。這很讓人懷疑,但不能完全排除這種可能。
  快子理論的問題,一是違反因果性,二是快子的存在使真空不穩定。後者可以在理論上避免,但那樣就無法實現我們想要得超光速通信了。
  實際上,大多數物理學家認為快子是場論的病態行為的表現,而公衆對於快子的興趣多是因為它們在科幻作品中出現得次數很多。
  20.蟲洞
  關於全局超光速旅行的一個著名建議是利用蟲洞。蟲洞是彎麯時空中連接兩個地點的捷徑,從a地穿過蟲洞到達b地所需要的時間比光綫從a地沿正常路徑傳播到b地所需要的時間還要短。蟲洞是經典廣義相對論的推論,但創造一個蟲洞需要改變時空的拓撲結構。這在量子引力論中是可能的。
  開一個蟲洞需要負能量區域,misner和thorn建議在大尺度上利用casimir效應産生負能量區域。visser建議使用宇宙弦。這些建議都近乎不切實際的瞎想。具有負能量的怪異物質可能根本就無法以他們所要求的形式存在。
  thorn發現如果能創造出蟲洞,就能利用它在時空中構造閉合的類時世界綫,從而實現時間旅行。有人認為對量子力學的多重性(multiverse)解釋可以用來消除因果性悖論,即,如果你回到過去,歷史就會以與原來不同的方式發生。
  hawking認為蟲洞是不穩定的,因而是無用的。但蟲洞對於思想實驗仍是一個富有成果的區域,可以用來澄清在已知的和建議的物理定律之下,什麽是可能的,什麽是不可能的。
  refs: w. g. morris and k. s. thorne, american journal of physics 56, 395-412 (1988) w. g. morris, k. s. thorne, and u. yurtsever, phys. rev. letters 61, 1446-9 (1988) matt visser, physical review d39, 3182-4 (1989) see also "black holes and time warps" kip thorn, norton & co. (1994) for an explanation of the multiverse see, "the fabric of reality" david deutsch, penguin press.
  21.麯相推進(warp drive)
  麯相推進是指以特定的方式讓時空彎麯,從而使物體超光速運動。miguel alcubierre因為提出了一種能實現麯相推進的時空幾何結構而知名。時空的彎麯使得物體能以超光速旅行而同時保持在一條類時世界綫上。跟蟲洞一樣,麯相推進也需要具有負能量密度的怪異物質。即使這種物質存在,也不清楚具體應如何佈置這些物質來實現麯相推進。
  對時光倒流的理解所謂“時光倒流”就是光的多普勒效應。 並不是“時間”倒流,而是世界的感覺“倒流”。 與聲音可以類比,都是波粒二象性。 多普勒效應根本上是由於波的傳播速度是絶對的,衹與介質有關,與聲源和接受物體運動狀況無關。 換句話說,波的傳播應以介質作為參考係。 突破光速屏障時會有“光障”(類似“聲障”) 現象可與超音速飛行類比,並不是不可能。
超光速存在嗎?
  2000年7月,由於英國《自然》(Nature,2000,406:277)雜志發表了一篇關於“超光速”實驗的論文,引起了人們對超光速倒底是否存在的討論。其實對在介質中使光脈衝的群速度超過真空中光速c, 科學家們早有研究,而Nature中報道的這個實驗就是實現了這種想法。但是這並非是人們想象的那種所謂違反因果律(或者相對論)的超光速,為了說明這個問題,讓我們看一看由華人科學家王力軍所做的這個實驗。
  光脈衝是由不同頻率、振幅、相位的光波組成的波包,光脈衝的每個成分的速度稱為相速度,波包峰的速度稱為群速度。在真空中二者是相同的,但是在介質中如我們所知道的存在如下的群速度與介質。
  折射率的關係:
  vg = c / ng , ng = n + ω(dn/dω)
  顯然在一定的情況下(如反常色散很強的介質)可以出現負的群速度,此時,光脈衝在介質中傳播比真空中花的時間短,其差ΔT = (L/v) - (L/c)達到絶對值足夠大時就可以觀察到“超光速”現象,即“光脈衝峰值進入介質以前,在另一邊已經有脈衝峰出射了”(由王力軍原文譯)。
  那麽這種超光速是不是違背因果率呢?我們仔細考查王的實驗就會發現,出射光脈衝雖然是在入射脈衝峰值進入介質之前出現的,但在這之前入射脈衝的前沿早已進入介質了(如圖),因此出射脈衝可以看作是由入射脈衝前沿與介質相互作用産生 的。其實王的實驗重要意義正在於實現了可觀測的負群速度的這一現象,而不是像媒體炒作的那樣發現了什麽“超光速”,負的群速度在這裏就不能理解為光的速度了,它也不是能量傳輸的速度。當然,這一實驗本身就說明我們人類對光的認識又前進了一步。對這個實驗的解釋衹憑折射率與群速度的關係這個公式是遠遠不夠的,這其中包含了量子干涉的效應,涉及到對光的本質的認識,揭開蒙在“超光速實驗”頭上的面紗,仍然是科學家們奮鬥的目標。
  很多人在瞭解了這個實驗後就會想到能否用這種“超光速”效應來傳遞信息,在王的實驗中,“超光速”的脈衝不能攜帶有用的信息,因此也就無從談起信息的超光速傳遞,同樣能量的超光速傳輸也是不行的。
  與超光速實驗具有相同轟動效應的是另一種“超光速”現象
  quantum teleportation即量子超空間傳輸(或量子隱形傳態),這個奇妙的現象因其與量子信息傳遞及量子計算機的實現有密切聯繫而引起人們的關註。所謂超空間,就是量子態的傳輸不是在我們通常的空間進行,因此就不會受光速極限的製約,瞬時地使量子態從甲地傳輸到乙地(實際上是甲地粒子的量子態信息被提取瞬時地在乙地粒子上再現),這種量子信息的傳遞是不需要時間的,是真正意義的超光速(也可理解為超距作用)。在量子超空間傳輸的過程中,遵循量子不可剋隆定律,通過量子糾纏態使甲乙粒子發生關聯,量子態的確定通過量子測量來進行,因此當甲粒子的量子態被探測後甲乙兩粒子瞬時塌縮到各自的本徵態,這時乙粒子的態就包含了甲粒子的信息。這種信息的傳遞是“超光速”的。
  但是,如果一位觀測者想要馬上知道傳送的信息是什麽,這是不可能的,因為此時粒子乙仍處於量子疊加態,對它的測量不能得到完全的信息,我們必須知道對甲粒子采取了什麽測量,所以不得不通過現實的信息傳送方式(如電話,網絡等)告訴乙地的測量者甲粒子此時的狀態。最終,我們獲得信息的速度還是不能超過光速!量子超空間傳輸的實驗已在1997年實現了(見Nature,390,575.1997)。
  以上兩個超光速的方案目前還衹處於理論探討和實驗階段,離實用還有很遠的距離,而且這兩個問題都涉及到物理學的本質,實驗現象及其解釋都在爭論之中。
相對論問答——超光速
  人們所感興趣的超光速,一般是指超光速傳遞能量或者信息。根據狹義相對論,這種意義下的超光速旅行和超光速通訊一般是不可能的。目前關於超光速的爭論,大多數情況是某些東西的速度的確可以超過光速,但是不能用它們傳遞能量或者信息。但現有的理論並未完全排除真正意義上的超光速的可能性。
  首先討論第一種情況:並非真正意義上的超光速
  1.切倫科夫效應
  媒質中的光速比真空中的光速小。粒子在媒質中的傳播速度可能超過媒質中的光速。在這種情況下會發生輻射,稱為切侖科夫效應。這不是真正意義上的超光速,真正意義上的超光速是指超過真空中的光速。
  2.第三觀察者
  如果A相對於C以0.6c的速度嚮東運動,B相對於C以0.6c的速度嚮西運動。對於C來說,A和B之間的距離以1.2c的速度增大。這種“速度”--兩個運動物體之間相對於第三觀察者的速度--可以超過光速。但是兩個物體相對於彼此的運動速度並沒有超過光速。在這個例子中,在A的坐標係中B的速度是0.88c。在B的坐標係中A的速度也是0.88c。
  3.影子和光斑
  在燈下晃動你的手,你會發現影子的速度比手的速度要快。影子與手晃動的速度之比等於它們到燈的距離之比。如果你朝月球晃動手電筒,你很容易就能讓落在月球上的光斑的移動速度超過光速。遺憾的是,不能以這種方式超光速地傳遞信息。
  影子和與手晃動的速度之比確實等於它們到燈的距離之比,但影子的最快速度不會超過光速.光斑也是如此.假設有一個仰角為60度的斜坡,一個物體以0.6C的速度水平運動,那麽理論上在斜坡上的投影的速度是1.2C,實際上影子最大速度為C.現象表現為影子不會出現在該物體垂直投射的方位,而是會滯後.
  4.剛體
  敲一根棍子的一頭,振動會不會立刻傳到另一頭?這豈不是提供了一種超光速通訊方式?很遺憾,理想的剛體是不存在的,振動在棍子中的傳播是以聲速進行的,而聲速歸根結底是電磁作用的結果,因此不可能超過光速。(一個有趣的問題是,竪直地拎着一根棍子的上端,突然鬆手,是棍子的上端先開始下落還是棍子的下端先開始下落?答案是上端。)
  5.相速度
  光在媒質中的相速度在某些頻段可以超過真空中的光速。相速度是指連續的(假定信號已傳播了足夠長的時間,達到了穩定狀態)的正弦波在媒質中傳播一段距離後的相位滯後所對應的“傳播速度”。很顯然,單純的正弦波是無法傳遞信息的。要傳遞信息,需要把變化較慢的波包調製在正弦波上,這種波包的傳播速度叫做群速度,群速度是小於光速的。(譯者註:索末菲和布裏淵關於脈衝在媒質中的傳播的研究證明了有起始時間的信號[在某時刻之前為零的信號]在媒質中的傳播速度不可能超過光速。)
  6.超光速星係
  朝我們運動的星係的視速度有可能超過光速。這是一種假象,因為沒有修正從星係到我們的時間的減少。
  舉一個例子:假如我們測量一個目前離我們10光年的星係,它的運動速度為2/3 c。
  現在測量,測出的距離卻是30光年,因為它當時發出的光到時,星係恰到達10光年處;
  3年後,星係到了8光年處,那末視距離為8光年的3倍,即24光年。
  結果,3年中,視距離減小了6光年……
  7.相對論火箭
  地球上的人看到火箭以0.8c的速度遠離,火箭上的時鐘相對於地球上的人變慢,是地球時鐘的0.6倍。如果用火箭移動的距離除以火箭上的時間,將得到一個“速度”是4/3 c。因此,火箭上的人是以“相當於”超光速的速度運動。對於火箭上的人來說,時間沒有變慢,但是星係之間的距離縮小到原來的0.6倍,因此他們也感到是以相當於4/3 c的速度運動。這裏問題在於這種用一個坐標係的距離除以另一個坐標係中的時間所得到的數不是真正的速度。
  8.萬有引力傳播的速度
  有人認為萬有引力的傳播速度超過光速。實際上萬有引力以光速傳播。
  9.EPR悖論
  1935年Einstein,Podolski和Rosen發表了一個思想實驗試圖表明量子力學的不完全性。他們認為在測量兩個分離的處於entangled state的粒子時有明顯的超距作用。Ebhard證明了不可能利用這種效應傳遞任何信息,因此超光速通信不存在。但是關於EPR悖論仍有爭議。
  10.虛粒子
  在量子場論中力是通過虛粒子來傳遞的。由於海森堡不確定性這些虛粒子可以以超光速傳播,但是虛粒子衹是數學符號,超光速旅行或通信仍不存在。
  11.量子隧道
  量子隧道是粒子逃出高於其自身能量的勢壘的效應,在經典物理中這種情況不可能發生。計算一下粒子穿過隧道的時間,會發現粒子的速度超過光速。
  Ref: T. E. Hartman, J. Appl. Phys. 33, 3427 (1962)
  一群物理學家做了利用量子隧道效應進行超光速通信的實驗:他們聲稱以4.7c的速度穿過11.4cm寬的勢壘傳輸了莫紮特的第40交響麯。當然,這引起了很大的爭議。大多數物理學家認為,由於海森堡不確定性,不可能利用這種量子效應超光速地傳遞信息。如果這種效應是真的,就有可能在一個高速運動的坐標係中利用類似裝置把信息傳遞到過去。
  Ref: W. Heitmann and G. Nimtz, Phys Lett A196, 154 (1994); A. Enders and G. Nimtz, Phys Rev E48, 632 (1993)
  Terence Tao認為上述實驗不具備說服力。信號以光速通過11.4cm的距離用不了0.4納秒,但是通過簡單的外插就可以預測長達1000納秒的聲信號。因此需要在更遠距離上或者對高頻隨機信號作超光速通信的實驗。
  12 卡西米(Casimir)效應
  當兩塊不帶電荷的導體板距離非常接近時,它們之間會有非常微弱但仍可測量的力,這就是卡西米效應。卡西米效應是由真空能(vacuum energy)引起的。Scharnhorst的計算表明,在兩塊金屬板之間橫嚮運動的光子的速度必須略大於光速(對於一納米的間隙,這個速度比光速大10-24)。在特定的宇宙學條件下(比如在宇宙弦(cosmicstring)的附近[假如它們存在的話]),這種效應會顯著得多。但進一步的理論研究表明不可能利用這種效應進行超光速通信。
  Ref: K. Scharnhorst, Physics Letters B236, 354 (1990) S. Ben-Menahem, Physics Letters B250, 133 (1990) Andrew Gould (Princeton, Inst. Advanced Study). IASSNS-AST-90-25Barton & Scharnhorst, J Phys A26, 2037 (1993)
  13.宇宙膨脹
  哈勃定理說:距離為D的星係以HD的速度分離。H是與星係無關的常數,稱為哈勃常數。距離足夠遠的星係可能以超過光速的速度彼此分離,但這是相對於第三觀察者的分離速度。
  14.月亮以超光速的速度繞着我旋轉!
  當月亮在地平綫上的時候,假定我們以每秒半周的速度轉圈兒,因為月亮離我們385,000公裏,月亮相對於我們的旋轉速度是每秒121萬公裏,大約是光速的四倍多!這聽起來相當荒謬,因為實際上是我們自己在旋轉,卻說是月亮繞這我們轉。但是根據廣義相對論,包括旋轉坐標係在內的任何坐標係都是可用的,這難道不是月亮以超光速在運動嗎?
  問題在於,在廣義相對論中,不同地點的速度是不可以直接比較的。月亮的速度衹能與其局部慣性係中的其他物體相比較。實際上,速度的概念在廣義相對論中沒多大用處,定義什麽是“超光速”在廣義相對論中很睏難。在廣義相對論中,甚至“光速不變”都需要解釋。愛因斯坦自己在《相對論:狹義與廣義理論》第76頁說“光速不變”並不是始終正確的。當時間和距離沒有絶對的定義的時候,如何確定速度並不是那麽清楚的。
  儘管如此,現代物理學認為廣義相對論中光速仍然是不變的。當距離和時間單位通過光速聯繫起來的時候,光速不變作為一條不言自明的公理而得到定義。在前面所說的例子中,月亮的速度仍然小於光速,因為在任何時刻,它都位於從它當前位置發出的未來光錐之內。
  15.明確超光速的定義
  第一部份列舉的各種似是而非的“超光速”例子表明了定義“超光速”的睏難。象影子和光斑的“超光速”不是真正意義的超光速,那麽,什麽是真正意義上的超光速呢?
  在相對論中“世界綫”是一個重要概念,我們可以藉助“世界綫”來給“超光速”下一個明確定義。
  什麽是“世界綫”?我們知道,一切物體都是由粒子構成的,如果我們能夠描述粒子在任何時刻的位置,我們就描述了物體的全部“歷史”。想象一個由空間的三維加上時間的一維共同構成的四維空間。由於一個粒子在任何時刻衹能處於一個特定的位置,它的全部“歷史”在這個四維空間中是一條連續的麯綫,這就是“世界綫”。一個物體的世界綫是構成它的所有粒子的世界綫的集合。
  不光粒子的歷史可以構成世界綫,一些人為定義的“東西”的歷史也可以構成世界綫,比如說影子和光斑。影子可以用其邊界上的點來定義。這些點並不是真正的粒子,但它們的位置可以移動,因此它們的“歷史”也構成世界綫。
  四維時空中的一個點表示的是一個“事件”,即三個空間坐標加上一個時間坐標。任何兩個“事件”之間可以定義時空距離,它是兩個事件之間的空間距離的平方減去其時間間隔與光速的乘積的平方再開根號。狹義相對論證明了這種時空距離與坐標係無關,因此是有物理意義的。
  時空距離可分三類:類時距離:空間間隔小於時間間隔與光速的乘積類光距離:空間間隔等於時間間隔與光速的乘積類空距離:空間間隔大於時間間隔與光速的乘積
  下面我們需要引入“局部”的概念。一條光滑麯綫,“局部”地看,非常類似一條直綫。類似的,四維時空在局部是平直的,世界綫在局部是類似直綫的,也就是說,可以用勻速運動來描述,這個速度就是粒子的瞬時速度。
  光子的世界綫上,局部地看,相鄰事件之間的距離都是類光的。在這個意義上,我們可以把光子的世界綫說成是類光的。
  任何以低於光速的速度運動的粒子的世界綫,局部的看,相鄰事件之間的距離都是類時的。在這個意義上,我們可以把這種世界綫說成是類時的。
  而以超光速運動的粒子或人為定義的“點”,它的世界綫是類空的。這裏說世界綫是類空的,是指局部地看,相鄰事件的時空距離是類空的。
  因為有可能存在彎麯的時空,有可能存在這樣的世界綫:局部地看,相鄰事件的距離都是類時的,粒子並沒有超光速運動;但是存在相距很遠的兩個事件,其時空距離是類空的。這種情況算不算超光速呢?
  這個問題的意義在於說明既可以定義局部的“超光速”,也可以定義全局的“超光速”。即使局部的超光速不可能,也不排除全局超光速的可能性。全局超光速也是值得討論的。
  總而言之,“超光速”可以通過類空的世界綫來定義,這種定義的好處是排除了兩個物體之間相對於第三觀察者以“超光速”運動的情況。
  下面來考慮一下什麽是我們想超光速傳送的“東西”,主要目的是排除“影子”和“光斑”之類沒用的東西。粒子、能量、電荷、自旋、信息是我們想傳送的。有一個問題是:我們怎麽知道傳送的東西還是原來的東西?這個問題比較好辦,對於一個粒子,我們觀察它的世界綫,如果世界綫是連續的,而且沒有其他粒子從這個粒子分離出來,我們就大體可以認為這個粒子還是原來那個粒子。
  顯然,傳送整個物體從技術上來講要比傳送信息睏難得多。現在我們已經可以毫無睏難地以光速傳遞信息。從本質上講,我們衹是做到了把信息放到光子的時間序列上去和從光子的時間序列中重新得到人可讀的信息,而光子的速度自然就是光速。
  類似地,假如快子(tachyons,理論上預言的超光速粒子)真的存在的話,我們衹需要發現一種能夠控製其産生和發射方向的技術,就可以實現超光速通信。
  極其可能的是,傳送不同的粒子所需要的代價是極其不同的,更經濟的辦法是采用復製技術。假如我們能夠得到關於一個物體的全部信息,並且我們掌握了從這些信息復製原物體的技術,那麽超光速通信與超光速旅行是等價的。
  科幻小說早就有這個想法了,稱之為遠距離傳真(teleport)。簡單的說,就是象傳真一樣把人在那邊復製一份,然後把這邊的原件銷毀,就相當於把人傳過去了。當然問題是象人這種有意識的復雜物體能否復製。
  16.無限大的能量
  E = mc^2/sqrt(1 - v^2/c^2)
  上述公式是靜止質量為m的粒子以速度v運動時所具有的能量。
  很顯然,速度越高能量越大。因此要使粒子加速必須要對它做功,做的功等於粒子能量的增加。
  註意當v趨近於c時,能量趨於無窮大,因此以通常加速的方式使粒子達到光速是不可能的,更不用說超光速了。
  但是這並沒有排除以其他方式使粒子超光速的可能性。
  粒子可以衰變成其他粒子,包括以光速運動的光子(光子的靜止質量為零,因此雖以光速運動,其能量也可以是有限值,上述公式對光子無效)。衰變過程的細節無法用經典物理學來描述,因此我們無法否定通過衰變産生超光速粒子的可能性(?)。
  另一種可能性是速度始終高於光速的粒子。既然有始終以光速運動的光子,有始終以低於光速的速度運動的粒子,為什麽不會有始終以高於光速的速度運動的粒子呢?
  問題是,如果在上述公式中v>c,要麽能量是虛數,要麽質量是虛數。假如存在這樣的粒子,虛數的能量與質量有沒有物理意義呢?應該如何解釋它們的意義?能否推出可觀測的預言?
  衹要找到這種粒子存在的證據,找到檢測這種粒子的方法,找到使這種粒子的運動發生偏轉的方法,就能實現超光速通信。
  17.量子場論
  到目前為止,除引力外的所有物理現象都符合粒子物理的標準模型。標準模型是一個相對論量子場論,它可以描述包括電磁相互作用、弱相互作用、強相互作用在內的三種基本相互作用以及所有已觀測到的粒子。根據這個理論,任何對應於兩個在有類空距離的事件處所作物理觀測的算子是對易的(any pair of operators corresponding to physical observables at space-time events which are separated by a space like interval commute)。原則上講,這意味着任何作用不可能以超過光速的速度傳播。
  但是,沒有人能證明標準模型是自洽的(self-consistent)。很有可能它實際上確實不是自洽的。無論如何,它不能保證將來不會發現它無法描述的粒子或相互作用。也沒有人把它推廣到包括廣義相對論和引力。很多研究量子引力的人懷疑關於因果性和局域性的如此簡單的表述能否作這樣的推廣。總而言之,在將來更完善的理論中,無法保證光速仍然是速度的上限。
  18.祖父悖論(因果性)
  反對超光速的最好證據恐怕莫過於祖父悖論了。根據狹義相對論,在一個參考係中超光速運動的粒子在另一坐標係中有可能回到過去。因此超光速旅行和超光速通信也意味着回到過去或者嚮過去傳送信息。如果時間旅行是可能的,你就可以回到過去殺死你自己的祖父。這是對超光速強有力的反駁。但是它不能排除這種可能性,即我們可能作有限的超光速旅行但不能回到過去。另一種可能是當我們作超光速旅行時,因果性以某種一致的方式遭到破壞。
  總而言之,時間旅行和超光速旅行不完全相同但有聯繫。如果我們能回到過去,我們大體上也能實現超光速旅行。
  第三部份:未定論的超光速的可能性
  19.快子(tachyon)
  快子是理論上預言的粒子。它具有超過光速的局部速度(瞬時速度)。它的質量是虛數,但能量和動量是實數。 有人認為這種粒子無法檢測(譯註:那這種預言有什麽意義:-)),但實際未必如此。影子和光斑的例子就說明超過光速的東西也是可以觀測到的。
  目前尚無快子存在的實驗證據,絶大多數人懷疑它們的存在。有人聲稱在測Tritium貝塔衰變放出的中微子質量的實驗中有證據表明這些中微子是快子。這很讓人懷疑,但不能完全排除這種可能。
  快子理論的問題,一是違反因果性,二是快子的存在使真空不穩定。後者可以在理論上避免,但那樣就無法實現我們想要得超光速通信了。
  實際上,大多數物理學家認為快子是場論的病態行為的表現,而公衆對於快子的興趣多是因為它們在科幻作品中出現得次數很多。
  20.蟲洞
  關於全局超光速旅行的一個著名建議是利用蟲洞。蟲洞是彎麯時空中連接兩個地點的捷徑,從A地穿過蟲洞到達B地所需要的時間比光綫從A地沿正常路徑傳播到B地所需要的時間還要短。蟲洞是經典廣義相對論的推論,但創造一個蟲洞需要改變時空的拓撲結構。這在量子引力論中是可能的。
  開一個蟲洞需要負能量區域,Misner和Thorn建議在大尺度上利用Casimir效應産生負能量區域。Visser建議使用宇宙弦。這些建議都近乎不切實際的瞎想。具有負能量的怪異物質可能根本就無法以他們所要求的形式存在。
  Thorn發現如果能創造出蟲洞,就能利用它在時空中構造閉合的類時世界綫,從而實現時間旅行。有人認為對量子力學的多重性(multiverse)解釋可以用來消除因果性悖論,即,如果你回到過去,歷史就會以與原來不同的方式發生。
  Hawking認為蟲洞是不穩定的,因而是無用的。但蟲洞對於思想實驗仍是一個富有成果的區域,可以用來澄清在已知的和建議的物理定律之下,什麽是可能的,什麽是不可能的。
  Refs: W. G. Morris and K. S. Thorne, American Journal of Physics 56, 395-412 (1988) W. G. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Letters 61, 1446-9 (1988) Matt Visser, Physical Review D39, 3182-4 (1989) see also "Black Holes and Time Warps" Kip Thorn, Norton & co. (1994) For an explanation of the multiverse see, "The Fabric of Reality" David Deutsch, Penguin Press.
  21.麯相推進(warp drive)
  麯相推進是指以特定的方式讓時空彎麯,從而使物體超光速運動。Miguel Alcubierre因為提出了一種能實現麯相推進的時空幾何結構而知名。時空的彎麯使得物體能以超光速旅行而同時保持在一條類時世界綫上。跟蟲洞一樣,麯相推進也需要具有負能量密度的怪異物質。即使這種物質存在,也不清楚具體應如何佈置這些物質來實現麯相推進。
對時光倒流的理解
  所謂“時光倒流”就是光的多普勒效應。 並不是“時間”倒流,而是世界的感覺“倒流”。 與聲音可以類比,都是波粒二象性。 多普勒效應根本上是由於波的傳播速度是絶對的,衹與介質有關,與聲源和接受物體運動狀況無關。 換句話說,波的傳播應以介質作為參考係。 突破光速屏障時會有“光障”(類似“聲障”) 現象可與超音速飛行類比,並不是不可能。
  光速不變的條件是這樣的:介質穩定。因為在任何穩定的介質中,任何波的速度都不變,與參照係無關。當聲波的介質相對於測量者靜止時,無論聲源速度如何變化,聲速不變(衹改變音頻),這是著名的多普勒實驗,其它所有機械波都有類似現象。
  舉例來說,運動的火車頭髮出的聲音,相對地面還是聲速(聲速不變),不是火車速度加聲速,而相對火車速度是聲速減火車速度(加利略變換);而在超音速飛機內部從機尾嚮機頭髮出聲音,相對飛機,還是聲速(聲速不變),而相對地面,是飛機速度加聲速(伽利略變換)。因此速度是相對的,相對論變換與伽利略變換並存,而不是排斥。
  如果一個鐘,以0.5倍聲速從原點遠去,我們會聽到什麽現象呢?
  一秒鐘時,它距離原點0.5聲秒距離報1秒,但這個事件我們在原點聽見,需要再過0.5秒,於是我們發現,在本地鐘1.5秒時,遠處的鐘報1秒,本地鐘3秒時,遠離的鐘報2秒,也就是我們在忽略測量時間時,誤以為遠去的鐘慢了。而且速度越快,鐘慢得越厲害。
  假設有一把尺長1聲秒,而我們的測量地面上有一無限長尺子固定不動,運動尺頭尾各有一個探測裝置,在探測到與地面某一尺刻度重合時,用聲音報出該刻度,我們在地面尺原點接收聲音。尺勻速運動逐漸遠離,當尺尾報0聲秒時,尺頭已經距離我們1聲秒,而這個距離,要1秒後我們才能收到;當尺尾到1聲秒距離時,尺頭到2聲秒,還是要在我們收到尺尾報1聲秒後1秒,我們才能收到尺頭報2聲秒,於是我們會直觀的認為,尺尾先到刻度,尺頭後到達它本應立刻到達的刻度,感覺好象遠離的尺,縮短了。而且運動速度越快,感覺短的越厲害。
  如果超過聲速,我們將追上以前發出的聲音,聲波將倒序進如我們的耳朵,就好象時間在倒退。我們先聽到2點的鐘聲,後聽到1點的鐘聲。這個現象是感覺或計算“時光倒流”的本質原因。光也有類似現象。
  鐘慢、尺縮、超光速時間倒流現象,都可以用聲音試驗做出結果,這衹能證明愛因斯坦的結論有問題,他忽略了測量速度的問題,把現象當成了物理本質。照本文方法解釋相對論,雙生子悖論、子回到未生時殺父悖論都不存在。
  所以,即使存在超光速現象,但時光倒流而回到過去的的現象也不會發生。
相關詞
量子信息物理學相對論愛因斯坦科幻星際旅行
包含詞
超光速粒子超光速運動超光速引擎
超光速膨脹超光速驅動器超光速脈衝槍
視超光速運動超光速粒子:邊緣超光速粒子邊緣
十維空間超光速圈超光速粒子:邊緣十維空間——超光速
其他超光速運動現象天水市超光速網吧有限公司北京超光速傳媒廣告有限公司
其他“超光速運動”現象