1、augment path,直译为“增广路”,其思想大致如下:
原有网络为G,设有一辅助图G',其定义为V(G') = V(G),E(G')初始值(也就是容量)与E(G)相同。每次操作时从Source点搜索出一条到Sink点的路径,然后将该路径上所有的容量减去该路径上容量的最小值,然后对路径上每一条边<u,v>添加或扩大反方向的容量,大小就是刚才减去的容量。一直到没有路为止。此时辅助图上的正向流就是最大流。
我们很容易觉得这个算法会陷入死循环,但事实上不是这样的。我们只需要注意到每次网络中由Source到Sink的流都增加了,若容量都是整数,则这个算法必然会结束。
寻找通路的时候可以用DFS,BFS最短路等算法。就这两者来说,BFS要比DFS快得多,但是编码量也会相应上一个数量级。
增广路方法可以解决最大流问题,然而它有一个不可避免的缺陷,就是在极端情况下每次只能将流扩大1(假设容量、流为整数),这样会造成性能上的很大问题,解决这个问题有一个复杂得多的算法,就是预推进算法。
2、push label,直译为“预推进”算法。
3、压入与重标记(Push-Relabel)算法
除了用各种方法在剩余网络中不断找增广路(augmenting)的Ford-Fulkerson系的算法外,还有一种求最大流的算法被称为压入与重标记(Push-Relabel)算法。它的基本操作有:压入,作用于一条边,将边的始点的预流尽可能多的压向终点;重标记,作用于一个点,将它的高度(也就是label)设为所有邻接点的高度的最小值加一。Push-Relabel系的算法普遍要比Ford-Fulkerson系的算法快,但是缺点是相对难以理解。
Relabel-to-Front使用一个链表保存溢出顶点,用Discharge操作不断使溢出顶点不再溢出。Discharge的操作过程是:若找不到可被压入的临边,则重标记,否则对临边压入,直至点不再溢出。算法的主过程是:首先将源点出发的所有边充满,然后将除源和汇外的所有顶点保存在一个链表里,从链表头开始进行Discharge,如果完成后顶点的高度有所增加,则将这个顶点置于链表的头部,对下一个顶点开始Discharge。
Relabel-to-Front算法的时间复杂度是O(V^3),还有一个叫Highest Label Preflow Push的算法复杂度据说是O(V^2*E^0.5)。我研究了一下HLPP,感觉它和Relabel-to-Front本质上没有区别,因为Relabel-to-Front每次前移的都是高度最高的顶点,所以也相当于每次选择最高的标号进行更新。还有一个感觉也会很好实现的算法是使用队列维护溢出顶点,每次对pop出来的顶点discharge,出现了新的溢出顶点时入队。
Push-Relabel类的算法有一个名为gap heuristic的优化,就是当存在一个整数0<k<V,没有任何顶点满足h[v]=k时,对所有h[v]>k的顶点v做更新,若它小于V+1就置为V+1。
cpp程序:
#include<cstdio>
const long maxn=1000+10;
const long maxm=440000+100;
const long maxnum=100000000;
long n,m,s=0,tot=0,list[maxn],p[maxn],g[maxn],gg[maxn],dis[maxn];
bool mark[maxn];
struct node
{
long k,f,c,next,g;
}d[maxm<<1];
void insert(long u,long v,long c)
{
d[tot].k=v;
d[tot].f=0;
d[tot].c=c;
d[tot].next=g;
g=tot;
d[tot].g=tot+1;
tot++;
d[tot].k=u;
d[tot].f=0;
d[tot].c=0;
d[tot].next=g[v];
g[v]=tot;
d[tot].g=tot-1;
tot++;
}
void bfs()
{
long x,u,v,h,t;
for (long i=0;i<n;i++)
dis=0;
h=0;
t=1;
list=0;
最小费用最大流
一.Ford和Fulkerson迭加算法.
基本思路:把各条弧上单位流量的费用看成某种长度,用求解最短路问题的方法确定一条自V1至Vn的最短路;在将这条最短路作为可扩充路,用求解最大流问题的方法将其上的流量增至最大可能值;而这条最短路上的流量增加后,其上各条弧的单位流量的费用要重新确定,如此多次迭代,最终得到最小费用最大流.
迭加算法:
1) 给定目标流量F或∞,给定最小费用的初始可行流=0
2) 若V(f)=F,停止,f为最小费用流;否则转(3).
3) 构造 相应的新的费用有向图W(fij),在W(fij)寻找Vs到Vt的最小费用有向路P(最短路),沿P增加流f的流量直到F,转(2);若不存在从Vs到Vt的最小费用的有向路P,停止.f就是最小费用最大流.
具体解题步骤:
设图中双线所示路径为最短路径,费用有向图为W(fij).
在图(a)中给出零流 f,在图(b)中找到最小费用有向路,修改图(a)中的可行流,δ=min{4,3,5}=3,得图(c),再做出(c)的调整容量图,再构造相应的新的最小费用有向路得图(d), 修改图(c)中的可行流, δ=min{1,1,2,2}=1,得图(e),以此类推,一直得到图(h),在图(h)中以无最小费用有向路,停止,经计算:
图(h)中 最小费用=1*4+3*3+2*4+4*1+1*1+4*2+1*1+3*1=38
图(g)中 最大流=5
最大流问题仅注意网络流的流通能力,没有考虑流通的费用。实际上费用因素是很重要的。例如在交通运输问题中,往往要求在完成运输任务的前提下,寻求一个使总运输费用最省的运输方案,这就是最小费用流问题。如果只考虑单位货物的运输费用,那么这个问题就变成最短路问题。由此可见,最短路问题是最小费用流问题的基础。现已有一系列求最短路的成功方法。最小费用流(或最小费用最大流)问题 ,可以交替使用求解最大流和最短路两种方法,通过迭代得到解决。
二.圈算法:
1) 利用Ford和Fulkson标号算法找出流量为F(<=最大流)的流f.
2) 构造f对应的调整容量的流网络N'(f).
3) 搜索N'(f)中的负费用有向图C(Floyd算法),若没有则停止,否则转(4).
4) 在C上找出最大的循环流,并加到N上去,同时修改N'(F)中C的容量,转(3).
具体解题步骤:
利用Ford和Fulkson标号算法,得网络的最大流F=5,见图(a),由图(a)构造相应的调整容量的流网络(b),图(b)中不存在负费用有向图,故停止.经计算:
图(b)中 最小费用= 4*1+3*1+1*1+3*3+4*2+1*1+4*1+2*4=38
图(a)中 最大流为F=5
type
szbest=record
v,l:integer;
end;
szmap=record
c,f,w:integer;
end;
var
map:array[0..1000,0..1000] of szmap;
best:array[0..1000] of szbest;
i,j,ans,n,k,a,b,c,d,s,t:integer;
function find:boolean;
var i,j:integer;
flag:boolean;
begin
for i:=1 to n do best.v:=maxint;
best[s].v:=0;
repeat
flag:=true;
for i:=1 to n do
if best.v<maxint then
for j:=1 to n do
if (map[i,j].f<map[i,j].c)and(best.v+map
[i,j].w<best[j].v) then
begin
best[j].v:=best.v+map[i,j].w;
best[j].l:=i; flag:=false;
end;
until flag;
if best[t].v<maxint then exit(true) else exit(false);
end;
procedure updata;
var i,j:integer;
begin
i:=t;
while i<>s do begin
j:=best.l;
inc(map[j,i].f);
map[i,j].f:=-map[j,i].f;
i:=j;
end;
inc(ans,best[t].v);
end;
begin
assign(input,'g4.in');reset(input);
readln(n);
repeat
readln(a,b,c,d);
if a+b+c+d>0 then begin
map[a,b].c:=c; map[b,a].c:=0;
map[a,b].w:=d; map[b,a].w:=-d;
end;
until a+b+c+d=0;
s:=1; t:=n; ans:=0;
while find do updata;
writeln(ans);
for i:=1 to n do
for j:=1 to n do
if map[i,j].f>0 then writeln(i,' ',j,' ',map[i,j].w,'*',map
[i,j].f);
end.