| | 盾构机盾构的定义
即盾构机,简称盾构,全名叫盾构隧道掘进机(Tunnel Boring Machine),是一种隧道掘进的专用工程机械,它是一个横断面外形与隧道横断面外形相同,尺寸稍大,利用回旋刀具开挖,内藏排土机具,自身设有保护外壳用于暗挖隧道的机械。
盾构机的原理
盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时支撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。挖掘、排土、衬砌等作业在护盾的掩护下进行。
盾构机的特点
用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能,而且要按照不同的地质进行“量体裁衣”式的设计制造,可靠性要求极高。广泛应用于地铁、铁路、公路、市政、水电等隧道工程。
盾构机的种类
盾构的分类较多,可按盾构切削面的形状、盾构自身构造的特征、尺寸的大小、功能,挖掘土体的方式,掘削面的挡土形式,稳定掘削面的加压方式,施工方法,适用土质的状况多种方式分类。下面我们按照盾构组合命名分类阐述。
一、全敞开式盾构机(全敞开式盾构机的特点是掘削面敞露,故挖掘状态时干态状,所以出土效率高。适用于掘削面稳定的性好的地层,对于自稳定性差的冲积地层应辅以压气、降水、注浆加固等措施)
1.手掘式盾构机
手工掘削盾构机的前面是敞开的,所以盾构的顶部装有防止掘削面顶端坍塌的活动前檐和使其伸缩的千斤顶。掘削面上每隔2-3m设有一道工作平台,即分割间隔为2-3m。另外,在支撑环柱上安装有正面支撑千斤顶。掘削面从上往下,掘削时按顺序调换正面支撑千斤顶,掘削下来的沙土从下部通过皮带传输机输给出土台车。掘削工具多为鹤嘴锄、风镐、铁锹等。
2.半机械式盾构机
半机械式盾构机是在人工式盾构机的基础上安装掘土机械和出土装置,以代替人工作业。掘土装置有铲斗、掘削头及两者兼备三种形式。具体装备形式为A.铲斗、掘削头等装置设在掘削面的下部。B.铲斗装在掘削面的上半部,掘削头在下半部。C.掘削头装在掘削面的中心。D.铲斗装在掘削面的中心。
3.机械式盾构机
盾构机的前部装有旋转刀盘,故掘削能力大增。掘削下来的砂土由装在掘削刀盘上的旋转铲斗,经过斜槽送到输送机。由于掘削和排土连续进行,故工期缩短,作业人员减少。
二、部分开放式盾构机(即挤压式盾构机,其构造简单、造价低。挤压盾构适用于流塑性高、无自立性的软粘土层和粉砂层)
1.半挤压式盾构机(局部挤压式盾构机)
在盾构的前端用胸板封闭以挡住土体,使不致发生地层坍塌和水土涌入盾构内部的危险。盾构向前推进时,胸板挤压土层,土体从胸板上的局部开口处挤入盾构内,因此可不必开挖,使掘进效率提高,劳动条件改善。这种盾构称为半挤压式盾构,或局部挤压式盾构。
2.全挤压式盾构机
在特殊条件下,可将胸板全部封闭而不开口放土,构成全挤压式盾构。
3.网格式盾构机
在挤压式盾构的基础上加以改进,可形成一种胸板为网格的网格式盾构, 其构造是在盾构切口环的前端设置网格梁,与隔板组成许多小格子的胸板;借土的凝聚力,用网格胸板对开挖面土体起支撑作用。当盾构推进时,土体克服网格阻力从网格内挤入,把土体切成许多条状土块,在网格的后面设有提土转盘,将土块提升到盾构中心的刮板运输机上并运出盾构,然后装箱外运。
三、封闭式盾构机
1.泥水式盾构机
是通过加压泥水或泥浆(通常为膨润土悬浮液)来稳定开挖面,其刀盘后面有一个密封隔板,与开挖面之间形成泥水室,里面充满了泥浆,开挖土料与泥浆混合由泥浆泵输送到洞外分离厂,经分离后泥浆重复使用。
2.土压式盾构机
是把土料(必要时添加泡沫等对土壤进行改良)作为稳定开挖面的介质,刀盘后隔板与开挖面之间形成泥土室,刀盘旋转开挖使泥土料增加,再由螺旋输料器旋转将土料运出,泥土室内土压可由刀盘旋转开挖速度和螺旋输出料器出土量(旋转速度)进行调节。它又可细分为削土加压盾构、加水土压盾构、加泥土压盾构和复合土压盾构
盾构工法
盾构施工法是在地面下暗挖隧洞的一种施工方法,它使用盾构机在地下掘进,在防止软基开挖面崩塌或保持开挖面稳定的同时,在机内安全地进行隧洞的开挖和衬砌作业。其施工过程需先在隧洞某段的一端开挖竖井或基坑,将盾构机吊入安装,盾构机从竖井或基坑的墙壁开孔处开始掘进并沿设计洞线推进直至到达洞线中的另一竖井或隧洞的端点。盾构工法的选择,详尽地比较各种盾构工法的特征是关键。其中,选择适合土质条件并确保工作面稳定的盾构机种及合理辅助工法最重要。所以,盾构机的选型原则是因地制宜,尽量提高机械化程度,减少对环境的影响。
盾构机的发展历程
盾构机问世至今已有近180年的历史,其始于英国,发展于日本、德国。近30年来,通过对土压平衡式、泥水式盾构机中的关键技术,如盾构机的有效密封,确保开挖面的稳定、控制地表隆起及塌陷在规定范围之内,刀具的使用寿命以及在密封条件下的刀具更换,对一些恶劣地质如高水压条件的处理技术等方面的探索和研究解决,使盾构机有了很快的发展。盾构机技术仍有巨大的发展余地。现在的盾构机几乎全是针对具体项目规范和地质条件而量身订做。希望在不久的将来,能够实现盾构机设计的神圣目标 : 一台全球通用的机器,功能强大足以应付任何项目。这将从两个方面大大地降低费用,一是设计制造的标准化,而是推进二手机器市场。材料科学的发展将能够制造功能更强,缺陷更少的切割刀具,使得机器可以运行数百英里而无须停顿更换刀具。最后,应该很快可以实现机器的地面控制,从而避免为保证隧道内人员安全而采取的各种昂贵措施。这在一些小型隧道上已经实现。 | | dungou
盾构
shield
在软土和软岩地层中修建隧道时,用盾构法进行开挖和衬砌拼装的专用机械设备(图1盾构结构),其外壳通常为圆筒形的装配式或焊接式金属结构,也有配合隧道使用要求而做成矩形、马蹄形或半圆形等外形的。盾构的种类较多,但其基本构造均由壳体、推进设备、衬砌拼装机等组成。
盾构壳体 沿盾构长度方向分为切口环、支承环和盾尾三部分。前面是切口环,设有刃口,施工时切入土层,具有开挖和支撑土体的功能。其长度在手掘式盾构中,应考虑掩护工人开挖地层的安全和方便,一般为1.2~2.5米左右。 在机械化盾构中,只考虑容纳开挖机具。中部为支承环,是盾构的主要受力结构,盾壳的外荷载均由其承受。在小盾构中是一个刚度较大的圆环结构,在大中型盾构中则是一个钢制构架。推动盾构前进的千斤顶均设置在支承环的内周。在大中型盾构中通常把液压动力设备、配电盘、盾构操纵台等均安装在支承环的空间内。支承环的长度决定于盾构千斤顶的长度,它又与衬砌环的宽度有关,一般比最大衬砌环宽度长0.2~0.3米,约为1.8~2.2米。后部为盾尾,是由盾构外壳钢板延长构成,在盾尾的掩护下拼装隧道衬砌。盾尾末端设有盾尾密封装置,以防止泥水和注浆材料从盾尾与衬砌之间的空隙内流入。目前,普遍采用的盾尾密封装置有钢丝刷型和橡胶型两种。盾尾长度应保证盾构千斤顶活塞杆缩回后,能掩护1.5~2.5环衬砌宽度加千斤顶的顶铁厚度和0.1~0.2米的余量。切口环、支承环和盾尾长度之和为盾构长度。盾构的内径应比隧道衬砌外径略大,其空隙一般为衬砌外径的0.8%左右。 盾构长度与直径之比(□/□)称为盾构灵敏度。 它与盾构操纵的灵活性有着很大影响,其值越小,盾构操作越灵活,一般小盾构(□=2~3米)的灵敏度约为1.5左右;中型盾构(□=3~6米)约为 1.0左右;大盾构(□>6.0米)约为 0.75左右。常用的盾构直径约在3.0~10.0米之间。至80年代初,世界上最大的盾构为直径12.84米的手掘式盾构。
推进设备 由盾构千斤顶和液压装置组成。后者又由输油泵、高压油泵、控制油泵及一系列管路和操纵阀件构成。简单的液压控制设备是用手动高压操纵阀直接控制千斤顶活塞杆的伸缩,可省去控制油路和电磁阀等装置,简单、可靠、易行,但安全性较差。盾构千斤顶是盾构推进和调整方向的主要设备。千斤顶必须具有足够的顶进能力,以克服盾构推进时所遇到阻力。这些阻力主要有:①盾构外表面与地层间的摩擦力;②盾构内表面与衬砌间的摩擦力;③盾构前面地层的正面阻力。盾构千斤顶一般沿支承环内周均匀分布,其数量与管片或砌块的分块有关,一般至少为管片数目的两倍或按管片的偶数倍增加,以便在盾构推进时保证管片均匀受压。盾构千斤顶由缸体、活塞和活塞杆、支承顶铁等部分组成。盾构推进时,由液压装置的高压油泵通过管路和操纵阀体使高压油进入千斤顶缸体,而使活塞杆根据需要伸出或缩回。盾构千斤顶使用的油压一般为30~40兆帕,每只千斤顶顶力约为1~2兆牛。盾构中除推进用千斤顶外,还可根据需要设置正面支撑千斤顶和工作平台伸缩千斤顶。盾构中的液压装置除了对上述三种千斤顶供油之外,同时用作衬砌拼装机械的油马达和提升设备的液压供油。
衬砌拼装机 其形式由盾构直径的大小、衬砌构件的材料和形式、出土方式等因素决定。拼装机要具有抓住衬砌构件后能在盾构内作环向转动、径向伸缩和纵向前后移动的功能,以便使衬砌构件就位,其动力有液压、电动和手动。常用的拼装机有下列几种:
杠杆式拼装机 由举重臂和驱动机构组成。举重臂的一端是钳住构件的装置,另一端 | | - n.: jumbo
| | |
|
|