天文 : 佛教用语 : 历史人物 : 名人 : 数学与应用数学 : 物理学教育 : 经济 : 塑胶模具 : 美国 >马萨诸塞州 > 牛顿
显示地图
目录
牛顿 Sir Isaac Newton (1643~1727) 

Isaac Newton

艾萨克·牛顿爵士,PRS MP(英语:Sir Isaac Newton,1643年1月4日-1727年3月31日,英语发音[ˈaɪzək ˈnjuːtn̩]儒略历:1642年12月25日-1727年3月20日][a]是一位英格兰物理学家数学家天文学家自然哲学家炼金术士。1687年他发表《自然哲学的数学原理》,阐述了万有引力和三大运动定律,奠定世界物理和天文学的基础,成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心学说提供了强而有力的理论支持,是科学革命的一个代表。

在力学上,牛顿阐明了动量角动量守恒的原理。在光学上,他发明了反射望远镜,并基于对三棱镜发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速

在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。

在2005年,英国皇家学会发起了一场“谁是科学史上最有影响力的人”的民意调查,在皇家学会院士和网民投票中,牛顿的排名高于阿尔伯特·爱因斯坦
 

生平

早年生活

牛顿出生的房子,位于英格兰林肯郡伍尔索普
牛顿曾就读的国王中学
国王中学窗台牛顿的签名。

1643年1月4日(按照现行公历[a]),艾萨克·牛顿出生于英国英格兰东密德兰林肯郡南凯斯蒂文伍尔索普伍尔索普庄园。他的父亲同样名为艾萨克·牛顿,在他出生前三个月去世。由于早产的缘故,刚出生的牛顿十分瘦小;传闻他母亲汉娜·艾斯库曾说过,牛顿刚出生时小得可以装进一夸脱马克杯。牛顿3岁时,母亲改嫁并住进了新丈夫巴纳巴斯·史密斯牧师位于北威特姆的家,而把牛顿托付给了他的外祖母玛杰里·艾斯库。年幼的牛顿不喜欢他的继父,并因母亲嫁给他的事而对母亲持有一些敌意,牛顿甚至曾经写下:“威胁我的继父与生母,要把他们连同房子一起烧掉。”

据《大数学家》和《数学史介绍》两书记载:“牛顿在乡村学校开始学校教育的生活,后来被送到了格兰瑟姆国王中学,并成为了该校最出色的学生。在国王中学时,他寄宿在当地的药剂师威廉·克拉克家中,并在19岁前往剑桥大学求学前,与药剂师的继女安妮·斯托勒订婚。之后因为牛顿专注于他的研究而使得爱情冷却,斯托勒小姐嫁给了别人,牛顿也终生未娶。”

不过据和牛顿同时代的友人威廉·斯蒂克利所著的《艾萨克·牛顿爵士生平回忆录》一书的描述,斯蒂克利在牛顿死后曾访问过文森特夫人,也就是当年牛顿的恋人斯托勒小姐。文森特夫人的名字叫做凯瑟琳,而不是安妮,安妮是她的妹妹[b],而且夫人仅表示牛顿当年寄宿时对她只不过是“怀有情愫”的程度而已。

从12岁左右到17岁,牛顿都在国王中学学习,在该校图书馆的窗台上还可以看见他当年的签名。他曾从学校退学,并在1659年10月回到伍尔索普,因为他再度守寡的母亲想让牛顿当一名农夫。牛顿虽然顺从了母亲的意思,但据牛顿的同侪后来的叙述,耕作工作让牛顿相当不快乐。所幸国王中学的校长亨利·斯托克斯说服了牛顿的母亲,牛顿又被送回了学校以完成他的学业。他在18岁时完成了中学的学业,并得到了一份完美的毕业报告。牛顿的学业成绩如此优秀,部分原因是为了挑战和报复一个学校恶霸。剑桥心理学家西蒙·拜昂-柯恩认为,牛顿很可能患有亚斯伯格症候群

1661年6月,他进入了剑桥大学的三一学院。在那时,该学院的教学基于亚里士多德的学说,但牛顿更喜欢阅读一些勒奈·笛卡儿等现代哲学家以及伽利略·伽利莱尼古拉·哥白尼约翰内斯·开普勒天文学家更先进的思想。1665年,他发现了广义二项式定理,并开始发展一套新的数学理论,也就是后来为世人所熟知的微积分学。在1665年,牛顿获得了学位,而大学为了预防伦敦大瘟疫而关闭了。在此后两年里,牛顿在家中继续研究微积分学光学万有引力定律

1667年,牛顿获得奖学金,作为研究生重返剑桥大学三一学院。按照规定,只有被正式任命的牧师才有资格成为剑桥大学三一学院的研究生,由于持有非正统的宗教观点,牛顿不愿意成为牧师。但牧师职位的任命没有最后期限,因此牛顿先获得了研究生的名额,而牧师职位的任命被无限期地延后了。但是等后来牛顿被任命为卢卡斯数学教授席位时问题就来了,如此重要的职位不可能回避牧师职位任命这一条件。然而,牛顿获得了查理二世的许可,还是绕开了这一限制(参见“中年生活”)。

中年生活

数学

多数现代历史学家都相信,牛顿与莱布尼茨分别独立发明了微积分学。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。两人创造了不同的微积分符号,欧洲大陆全面采用莱布尼茨符号,而英国坚持使用牛顿的微积分符号,直到1820年才全面采纳莱布尼兹的符号。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。

牛顿与瑞士数学家尼古拉·法蒂奥·丢勒的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。

1699年初,皇家学会(牛顿也是其中的一员)的成员们指控莱布尼茨剽窃了牛顿的微积分成果,这导致了激烈的牛顿与莱布尼茨的微积分学论战。最终英国皇家学会宣布牛顿是微积分真正的发明者,斥责莱布尼茨剽窃。但后来人们发现该调查评论莱布尼茨的结语是牛顿本人书写。这场持续多年的激烈纠纷,沾污了牛顿与莱布尼茨声誉,直到莱布尼茨在1716年往生后才暂时停止。:356-362

牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转幂级数。他还发现了π的一个新公式。

他在1669年被授予卢卡斯数学教授席位。在那一天以前,剑桥或牛津的所有成员都是经过任命的圣公会牧师。不过,卢卡斯教授之职的条件要求其持有者不得活跃于教堂(大概是如此可让持有者把更多时间用于科学研究上)。牛顿认为应免除他担任神职工作的条件,这需要查理二世的许可,后者接受了牛顿的意见。这样避免了牛顿的宗教观点与圣公会信仰之间的冲突。

光学

从1670年到1672年,牛顿负责讲授光学。在此期间,他研究了光的折射,表明棱镜可以将白光发散为彩色光谱,而透镜和第二个棱镜可以将彩色光谱重组为白光。

牛顿1672年使用的6英寸反射望远镜复制品,为皇家学会所拥有。
光学》。

他还通过分离出单色的光束,并将其照射到不同的物体上的实验,发现了色光不会改变自身的性质。牛顿还注意到,无论是反射、散射或发射,色光都会保持同样的颜色。因此,我们观察到的颜色是物体与特定有色光相合的结果,不是物体产生颜色的结果。

牛顿发现棱镜可以将白光发散为彩色光谱。

由此,他得出如下结论:任何折射望远镜都会受到光色散成不同颜色的影响,并因此发明了反射望远镜(现称作牛顿望远镜)来克服这个困难。他自己打磨大直径的镜片,使用牛顿环来检验镜片的光学品质,从而制造出了优于折射望远镜的仪器。1671年,他向皇家学会展示了自己的反射望远镜,随后出版了自己的光学笔记,后来扩编为《光学》一书。罗伯特·胡克批评了牛顿的某些观点,牛顿对此很不满,并退出了辩论会。两人自此以后成为了敌人,这一直持续到胡克去世。

牛顿认为光是由粒子或微粒组成的,并会因加速通过光密介质而折射,他认为薄膜的折射和透射现象可以用光的“波动理论”来解释,但自己的“微粒理论”才能更好地解释光学现象,如衍射1704年,牛顿著成《光学》,其中他详述了光的粒子理论。他认为光是由非常微小的微粒组成的,而普通物质是由较粗微粒组成,并推测如果通过某种炼金术的转化“难道物质和光不能互相转变吗?物质不可能由进入其结构中的光粒子得到主要的动力(Activity)吗?后世的物理学家多持波动理论观点。后来的量子力学则认为光有波动和微粒二重性,称为波粒二象性,虽然该理论中的“微粒”光子与牛顿理论中的“微粒”差别很大。

1675年出版的《解释光属性的假说》(An Hypothesis explaining the Properties of Light)中,牛顿认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学亨利·莫尔接触后重新燃起了对炼金术的兴趣,并改用源于赫密斯神智学中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”但牛顿对炼金术的兴趣却与他对科学的贡献息息相关,而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的重力理论。

牛顿使用玻璃球制造了原始形式的摩擦静电发电机

力学

牛顿自己的《自然哲学的数学原理》副本,并带有为第2版所作的修正。

1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒行星运动定律、与胡克佛兰斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684)一书中,该书中包含有初步的、后来在《自然哲学的数学原理》中形成的运动定律。

自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下于1687年7月5日出版。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。

《原理》的出版使牛顿成为当时最有影响力的科学家。牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。

晚年生活

牛顿在1690年代写了很多处理圣经的文字解释的宗教小册子。亨利·摩尔的宇宙信仰和拒绝笛卡尔二元论影响了牛顿的宗教观念。在他发给约翰·洛克的一个从未发表的手稿中,他质疑了三位一体的存在性。

皇家铸币厂监管

1696年,牛顿通过当时的财政大臣查尔斯·孟塔古的提携迁到伦敦皇家铸币厂的监管,一直到去世。他主持英国最大的货币重铸工作,此职位一般都是闲职,但牛顿对该职位非常认真。他估计大约有20%的硬币是伪造的。伪造货币在英国大逆罪,会被处以极刑。为那些恶名昭著的罪犯定罪是非常困难的;不过事实证明牛顿做得很好。

他掩饰自己的身份而搜集许多证据,然后公布于酒吧客栈里。英国法律保留古老且麻烦的习惯,为的是让起诉有一定的门槛,并将政府部门从司法中分离开来。牛顿为此当上太平绅士,并在1698年6月到1699年圣诞节间引导对200名证人、告密者和嫌疑犯的交叉讯问。而最后牛顿得以胜诉,并在1699年2月执行10名罪犯的死刑。

也许牛顿最伟大的胜利是以国王法律代理人的身份与威廉·查洛纳对质。查洛纳密谋策动一起假的天主教阴谋活动,然后检举那些不幸被他诱骗来的共谋者。在向国会请愿时,查洛纳控告铸币厂有偿将工具提供给造伪币者,并请求国会允许他检查铸币厂的生产过程以证明他的控告。他还请求国会采纳他所谓的“无法伪造的造币过程”及“打击假币的计划”。此时,牛顿被激怒,并开始着手调查,以查出查洛纳做过事情。在调查中,牛顿发现查洛纳参与伪币制造。他立刻起诉查洛纳,可是因为查洛纳在高层有一些朋友,所以他被无罪释放,这让牛顿感到不满。在第二次起诉中,牛顿提供确凿的证据,并成功使查洛纳被判处大逆罪。1699年3月23日,查洛纳在泰伯恩行刑场被车裂。

1701年,牛顿辞去卢卡斯数学教授后。在改革对低成色货币和伪币的流通和惩罚上锻炼他的能力。牛顿在1717年通过安妮女王法案创立在金币和银币之间的联系,非正式的把英镑钱币从银本位转移到金本位;这在当时是重大的改革,相当程度的增加英格兰的财富和稳定。1705年,安妮女王授予牛顿爵士身份,牛顿是第二个被授勋的英国科学家,第一个是弗兰西斯·培根

皇家学会会长

1703年牛顿成为皇家学会会长和法国科学院的会员。他曾在《原理》的初版中使用天文学家约翰·佛兰斯蒂德的数据,后来他与约翰交恶,约翰不许他出版自己的星图。牛顿于是在《原理》的后续版本中系统性删除约翰的全部数据。

逝世

威斯敏斯特教堂内的牛顿之墓。

牛顿于1727年3月31日[儒略历:1726年3月20日][a]伦敦睡梦中辞世,享寿八十四岁。于西敏寺举行国葬,成为史上第一个获得国葬的自然科学家。

1970年代,对牛顿头发的化学分析显示其中水银含量比正常值超出50多倍,最可能的解释是他从事炼金术所致。汞中毒可能解释牛顿晚年的一些怪异行径。

牛顿之墓位于西敏寺中殿,墓地上方耸立着一尊牛顿的雕像,其石像倚坐在一堆书籍上。身边有两位天使,还有一个巨大的地球造型以纪念他在科学上的功绩。

英格兰诗人亚历山大·蒲柏为牛顿写下了以下这段墓志铭:

世界观 

牛顿反对将宇宙解释为一部纯粹的机器,譬如一座大钟。他说:“引力解释了行星的运动,但却不能解释谁让行星运动起来的。上帝统治万物,知晓所有做过和能做的事。”

牛顿在《圣经》与早期教会父老上的研究也值得注意。牛顿写作了一些圣经批判的作品,最著名的就是《两处著名圣经讹误的历史变迁》。牛顿还摆放了一座与传说日期公元33年4月3日相符耶稣·基督受难像。他亦尝试,但未成功地,去寻找《圣经》中隐藏的消息(参看圣经密码)。

牛顿可能拒绝了教会的三位一体教义。在少数的观点里,T·C·普菲岑迈尔(T.C. Pfizenmaier)认为他更像是持有东方东正教三位一体观,而不是西方天主教圣公宗和大部分新教教派的观点。在他的时代里,牛顿(与不少活跃于皇家学会查理二世宫廷的人士一样)被指是玫瑰十字会的会员

在他的一生中,牛顿写作了比自然科学更多的宗教学著述。他相信一个理性的主观世界(immanent world),但他却拒绝莱布尼茨和巴鲁赫·斯宾诺莎深信的万物有生论。因此,有序且动态的(ordered and dynamically informed)宇宙可以被理解,而且必须以主动的理性(active reason)去理解,但是这个完美且注定中的宇宙,必须有规律地运行。牛顿坚持认为,由于不稳定性的累积和缓慢增长,必须有神的不断干预来改良宇宙这个系统。为此,莱布尼茨讽刺牛顿说:“神必须时不时地给他造的钟上发条,否则这个钟就会停摆。看起来,他没有能力让这个钟永远运行。”

德国哲学家黑格尔批评牛顿的光学是“粗野的反思方式”,但黑格尔武断的自然哲学观点也使黑格尔的哲学体系在科学界名誉扫地

宗教思想

牛顿与罗伯特·波义耳机械论学说被理性主义作者提升成了泛神论狂热论的一个可行替代选项,并为东正教传教士与宗教自由主义一类的异见传教士有保留地接受了。这样,科学的清晰简洁,使得无论是在迷信者还是无神论者中,均无人可以企及,亦无人可以驳斥之。而与之同时,英国自然神论者的第二波浪潮使用了牛顿的发现来论证“自然宗教”的可能性。

威廉·布莱克的名画《牛顿》。在这幅画中,牛顿被贬低为一位“神学几何学者”。

波义耳的机械论宇宙观给出了不利于启蒙时代前的“魔法思想”和基督教神秘元素存在基础的抨击。牛顿通过数学证明的方式完善了波义耳的思想,并且,也许更重要的一点是,它们的普及也是非常成功的。打比方说,如果原来的世界是干涉主义的上帝所统治之世界的话,那么牛顿就将它变成了用理性及普遍原理进行设计的上帝所创造之世界。这些原理让每个人都能去获取知识,让每个人都能在此生此世积极地追求自身目标,并让每个人都能用自身的理性力量来完善自我。

牛顿视上帝为造物者,因此认为在面对着所有生物之宏伟时,祂的存在便是不容否认的。但他的上帝观产生了无法预见的神学结果,如同莱布尼茨指出的那样,上帝现在已经完全地从世界事务中隐退了:对干涉的需要只会证明上帝作品中的一些瑕疵,而这对一个完美且全能的造物主来说是不可能的事。莱布尼茨的神正论(theodicy)将上帝与参与祂的创造物的行为中分离开,从而消除了上帝在“罪恶问题”中承担的责任。于是,对世界的理解便降低到了个体原因的水平,而人类,如同奥多·马夸德所认识的那样,应为修正和消灭罪恶承担责任。

从另一方面说,宗教自由主义和牛顿学说的思想对千禧年主义的产生具有深远的影响。千禧年主义是一个相信机械论宇宙观的宗教派别,但其在实际上与狂热论和神秘论如出一辙。启蒙运动为了消灭它而与之进行了艰苦的斗争。

世界末日的观点

在1704年的一本手稿中,牛顿描述了他试图从《圣经》中提取出科学的信息,据他估计,世界将不会在2060年前终结。在预言中他说道:“我提到的这点并没有断言终结的时间,而是为那些频繁预测终结时间的空想者们轻率的臆说画上句号,每当他们的预言失败时,便给神圣的预言带来了耻辱。”

哲学思想

启蒙运动的哲学家们选择了科学先驱的一小段历史——主要是伽利略、波义耳和牛顿——作为他们将自然自然法则的单独概念应用于当时每处物理和社会领域的指南和保证。在此方面,历史的启示与建构于其上的社会结构不容废弃。

牛顿基于自然和可理性认知法则的宇宙观,促成了启蒙运动意识形态的萌芽。洛克和伏尔泰将自然法则的概念应用于政治系统中,以提倡固有的权利;重农主义者亚当·史密斯心理学利己主义的自然概念应用于经济系统中;而社会学家则批评当时的社会秩序,以试图让历史融入进步的自然模型里。蒙博多塞缪尔·克拉克一开始抵制牛顿的观点,但后来他们重新解读了牛顿的想法,使之与自己的宗教观念相融合。

牛顿运动定律

著名的三大运动定律:

  1. 牛顿第一定律(亦称惯性定律)指出,一个静止状态的物体趋向于保持静止状态,而在匀速运动中的物体趋向于保持匀速状态,除非受到合外力的作用。它阐述了力和惯性这两个物理概念,解释了力和运动状态的关系,并提出了一切物体都具有保持其运动状态不变的特性——惯性,是物理学中一条重要的基本定律。
  2. 牛顿第二定律指出,作用于一个物体上的作用力等于其动量随时间的变化率。在数学上,可写成。假定式中的质量为常量,则可消去第一项。将加速度定义为,则可得出著名的等式。这说明了一个物体的加速度与作用在物体上的合力成正比,与其质量成反比。在米-千克-秒的度量衡系统下,质量的单位为千克,加速度为米每二次方秒,力为牛顿(为纪念他而命名)。
  3. 牛顿第三定律指出,每个作用力都有一个等值反向的反作用力。

两个物体之间的作用力F和反作用力F´,沿同一直线,大小相等,方向相反,分别作用在两个物体上。

牛顿的苹果

牛顿的一则著名的故事称,牛顿在受到一颗从树上掉落的苹果启发后,阐示出了他的万有引力定律。漫画作品更认为,掉落的苹果正好砸中了牛顿的脑门,它的碰撞让他不知何故地明白了引力。约翰·康杜特,牛顿在皇家造币厂时的助理及牛顿外甥女的丈夫,在他有关牛顿生活的著述中提到了这件事:

1666年,他再次离开了剑桥大学,回到了住在林肯郡的母亲身边。当他在一座花园中沉思散步时,他突然想到重力(它的作用让一颗苹果从树上掉到地上)不会仅局限于地球周围的有限距离里,而会延伸到比平常认为的更远的地方。他自言自语道,为什么不和月亮一样高呢——如果这样,一定会对她的运动产生影响——也许可以让她保持在她的轨道上,于是他开始计算那样的假设会产生怎样的效果。

问题不在于引力是否存在,而在于它是否能从地球延伸到如此远,还能够成为保持月球在轨道运行的力。牛顿发现,如果让该力随距离的平方反比而减少,所计算出的月球轨道周期能与真实情况非常好地吻合。他猜想同样的力也导致了其他的轨道运动,并因此将之命名为“万有引力”。

被称为牛顿苹果树后代的一颗苹果树,发现于剑桥大学的植物种植园。

同时代的作家威廉·斯蒂克利牧师在他的《艾萨克·牛顿爵士生平回忆录》中记录了1726年4月15日他在肯辛顿与牛顿的一次谈话,在该次谈话中,牛顿回忆了“从前,引力的概念进入了他的脑海。在他正在沉思时,苹果的下落引起了他的思考。为什么苹果总会垂直地落在地上,他心中想到。为什么就不能走侧面或者向上升,却永远地朝向地球的中心。”相似的说法还出现在伏尔泰的著述《Essay on Epic Poetry》(1727)中:“艾萨克·牛顿爵士在他的花园里散步,首次想到了他的引力体系,接着便看见一颗苹果从树上掉下。”

这些描述都可能夸大了牛顿本人自己叙述的在家(伍尔索普庄园)里靠窗坐着时,看见苹果从树上掉落的故事。

许多棵树都被称作是牛顿所描述的“那棵苹果树”。牛顿的母校国王中学表示当年该树是这所学校买来的,在一些年后被连根拔起运到了校长的花园中。而当今拥有伍尔索普庄园所有权的国民信托的职员则认为在他们花园中的那棵树正是牛顿所描述的那棵。还有两棵原树后代种植在剑桥大学,一棵在该校三一学院的大门外、牛顿当年居住并从事研究的屋子下面,一棵在该校的植物园。

名言


有观点认为牛顿本人对他自己的成就非常谦逊,1676年,在他写给罗伯特·胡克的一封信中出现了一句名言:法国数学家约瑟夫·拉格朗日常常说牛顿是迄今为止最伟大的天才,他还曾经评价牛顿是“最幸运的,因为我们已经无法再创立一个世界体系了。”

但有两位作家John GribbinMichael White认为,这其实是牛顿对胡克(身材矮小并驼背)的讽刺,而不含有——或除此外不含有——谦逊的意味

牛顿在一篇回忆录中写道:

著作

  • 流数法》(Method of Fluxions,1671)
  • Of Natures Obvious Laws & Processes in Vegetation(1671–75)有关炼金术未完成的作品
  • 物体在轨道中之运动》(De Motu Corporum in Gyrum,1684)
  • 自然哲学的数学原理》(Philosophiae Naturalis Principia Mathematica,1687)
  • 光学》(Opticks,1704)
  • 作为铸币厂主管的报告》(Reports as Master of the Mint,1701-1725)
  • 广义算术》(Arithmetica Universalis,1707)
  • 《简编年史》(Short Chronicle)、《世界之体系》(The System of the World)、《光学讲稿》(Optical Lectures)、《古王国年表,修订》(The Chronology of Ancient Kingdoms, Amended)和De mundi systemate在他死后的1728年出版。
  • 两处著名圣经讹误的历史变迁》(An Historical Account of Two Notable Corruptions of Scripture,1754)

文化影响

牛顿只在去世前不久才和几个朋友谈到受苹果启发的事,并且苹果只是落在他面前,没有砸中他。2010年,为庆祝英国皇家学会成立350周年,皇家学会把一部分科学著作原稿的电子版上传到网上。其中的一份牛顿好友威廉·斯蒂克利于1752年出版的回忆录就澄清了牛顿与苹果树的故事。南京大学天津大学汕头大学、英国剑桥三一学院、美国麻省理工学院加拿大约克大学及日本东京大学都曾将牛顿老家的苹果树的后裔的枝条栽种到自家校园。

1983年,美国公共广播公司播出了一部名为《牛顿的苹果》的电视教育节目,共播出十余年。该节目90年代时曾引进中国。

流行文化

美国苹果公司最早的标志就是牛顿和他的苹果树。但这个标志过于复杂,也不适合进行矢量化处理(商业公司流行把Logo以矢量图的形式绘制和保存,以保证Logo在放大很多倍以后,细节也不失真),后来被放弃了。
  • 美国苹果公司最早的Logo就是一幅牛顿坐在苹果树下看书的钢笔绘画,由该公司创始人之一的罗纳德·韦恩所设计。虽然没有资料证明苹果公司的名称是否也来源于或部分地来源于牛顿的苹果,但苹果公司确实曾推出过一款名为牛顿的操作系统(见牛顿操作系统)及同名PDA(见Apple Newton)。
  • 在2015年开播的日本特摄剧假面骑士Ghost》中,牛顿为其中一个幽灵眼魂。
  • 在2014年上线的日本电子角色扮演游戏大航海时代V》中,牛顿除保留科学家身份外,也成为一名可由玩家扮演的航海家。
  • 牛顿和他的苹果经常成为科学题材电子游戏的宠儿。如在2009年由Petri Purho开发的游戏《蜡笔物理学》中,玩家需要在最后一关想办法让苹果砸醒打盹的牛顿。在2005年推出的中国游戏《帮助牛顿》(Help Newton)中,玩家需要通过各种办法让游戏中的苹果飞到牛顿手中。而在2016年推出的2D打架游戏《科学格斗》(Science Combat)中,玩家可以操纵牛顿用落地的苹果攻击对手,还可以用三棱镜射出的光线攻击对手。

注释

  1. 跳转至:1.0 1.1 1.2 1.3 1.4 牛顿在世时,欧洲通行有两种不同的历法:在英国和西欧的部分地区仍使用儒略历或称“旧历”,某些其他地方则已改用格里历或称“新历”。在牛顿出生时,格里历要比儒略历快10天:因此牛顿出生于儒略历1642年的圣诞节,或者是格里历1643年的1月4日。此外,在1752年英国改用格里历前,英格兰新年开始于3月25日(道成肉身纪念日,the anniversary of the Incarnation)而不是1月1日,因此牛顿死亡时,儒略历尚未跨年,但格里历已跨年。除非另有说明,本文中其他的日期均采用儒略历。
  2. ^ 参见(Arthur Store)。

参考文献

引用

  1. ^ Mordechai Feingold, Barrow, Isaac (1630–1677)Oxford Dictionary of National BiographyOxford University Press, September 2004; online edn, May 2007. Retrieved 24 February 2009; explained further in Mordechai Feingold " Newton, Leibniz, and Barrow Too: An Attempt at a Reinterpretation"; Isis, Vol. 84, No. 2 (June 1993), pp. 310–338
  2. ^ Dictionary of Scientific Biography, Newton, Isaac, n.4
  3. ^ Newton beats Einstein in polls of scientists and the public [在科学家与公众的民意调查中,牛顿打败了爱因斯坦]. 皇家学会. 2005-11-23[2015-01-29]. (原始内容存档于2006-02-07) (英语).
  4. ^ Cohen, I.B. Dictionary of Scientific Biography [科学传记辞典]. 纽约: Charles Scribner's Sons. 1970: 11卷,43页 (英语)Threatening my father and mother Smith to burn them and the house over them...
  5. ^ Bell, E.T. Men of Mathematics [大数学家] Touchstone edition. 纽约: Simon & Schuster. 1986: 91-2页  (英语)Newton began his schooling in the village schools and was later sent to The King's School, Grantham, where he became the top student in the school. At King's, he lodged with the local apothecary, William Clarke and eventually became engaged to the apothecary's stepdaughter, Anne Storer, before he went off to the University of Cambridge at the age of 19. As Newton became engrossed in his studies, the romance cooled and Miss Storer married someone else. It is said he kept a warm memory of this love, but Newton had no other recorded 'sweet-hearts' and never married.
  6. ^ Krantz, Steven. Book Review Isaac Newton biography [一本牛顿传记的书评] (PDF). 2003年12月 [2007-09-16] (英语).
  7. ^ Walter William Rouse Ball. A Short Account of the History of Mathematic s. Courier Corporation. 1960. ISBN 978-0-486-20630-1.
  8. ^ Newton, Isaac. Bk. II, Props. XII-L. Opticks [光学].
  9. ^ Dobbs, J.T. Newton's Alchemy and His Theory of Matter. Isis. December 1982, 73 (4): p. 523. quoting Opticks.原文为:“Are not gross Bodies and Light convertible into one another, ...and may not Bodies receive much of their Activity from the Particles of Light which enter their Composition?”
  10. ^ Keynes, John Maynard. Newton, The Man. The Collected Writings of John Maynard Keynes Volume X [凯恩斯作品集,卷X]. MacMillan St. Martin's Press. 1972: pp. 363–364 (英语)Newton was not the first of the age of reason: he was the last of the magicians.
  11. ^ Westfall, Richard S. Never at Rest: A Biography of Isaac Newton [永不止息:艾萨克·牛顿传]. 剑桥大学: 剑桥大学出版社. 1983: pp. 530–1  (英语).提到了牛顿显然抛弃了他的炼金术研究。
  12. ^ Optics, 8th Query.
  13. ^ Westfall 1980, pp. 571–5
  14. ^ Newton, Isaac (1642-1727). Eric Weisstein's World of Biography.[2006-08-30].
  15. ^ 原文为:“Nature and nature's laws lay hid in night; God said "Let Newton be" and all was light.”译文取自:Koyré, Alexandre. 《牛顿研究》. 张卜天译 第1版. 北京: 北京大学出版社. 2003年1月: 13. ISBN 7-301-06093-9(中文(简体)‎).
  16. ^ Tiner, J.H. Isaac Newton: Inventor, Scientist and Teacher [艾萨克·牛顿:发明家、科学家和教师]. 美国密歇根州米尔福德市: Mott Media. 1975 (英语)Gravity explains the motions of the planets, but it cannot explain who set the planets in motion. God governs all things and knows all that is or can be done.
  17. ^ 约翰·皮特·梅尔A Marginal Jew: Rethinking the Historical Jesus,第1卷,382–402页。在将年份范围缩小到30到33年后,暂时认为30年是最合适的。
  18. ^ Pfizenmaier, T.C. Was Isaac Newton an Arian?. Journal of the History of Ideas. 1997, 68 (1): 57–80页.
  19. ^ Yates, Frances A. The Rosicrucian Enlightenment [玫瑰十字会的启蒙运动]. 伦敦: Routledge. 1972 (英语).
  20. ^ 赵敦华. 第19章“黑格尔哲学体系”第4节“自然哲学”. 西方哲学简史 [A Short History Of Western Philosophy]. 张凤珠 (责任编辑) 2001年第1版. 北京市海淀区成府路205号: 北京大学出版社. 2007年印刷: 357. ISBN 978-7-301-04510-7. 。
  21. ^ Jacob, Margaret C. The Newtonians and the English Revolution: 1689–1720 [牛顿学说和英国革命:1689-1720]. 康奈尔大学出版社. 1976: pp.37,44 (英语).
  22. ^ Westfall, Richard S. Science and Religion in Seventeenth-Century England [十七世纪英格兰的科学与宗教]. 纽黑文: 耶鲁大学出版社. 1958: 200页 (英语).
  23. ^ Haakonssen, Knud. The Enlightenment, politics and providence: some Scottish and English comparisons. (编) Martin Fitzpatrick ed. Enlightenment and Religion: Rational Dissent in eighteenth-century Britain [启蒙运动与宗教:十八世纪英国的理性异教者]. 剑桥: 剑桥大学出版社. : 64页 (英语).
  24. ^ Frankel, Charles. The Faith of Reason: The Idea of Progress in the French Enlightenment [理性的失败:法国启蒙运动发展的思考]. 纽约: King's Crown Press. 1948: 1页 (英语).
  25. ^ Germain, Gilbert G. A Discourse on Disenchantment: Reflections on Politics and Technology [觉醒的演讲:政治与技术的沉思]. : 28页 (英语).
  26. ^ Principia, Book III; cited in; Newton’s Philosophy of Nature: Selections from his writings, p. 42, ed. H.S. Thayer, Hafner Library of Classics, NY, 1953.
  27. ^ A Short Scheme of the True Religion, manuscript quoted in Memoirs of the Life, Writings and Discoveries of Sir Isaac Newton by Sir David Brewster, Edinburgh, 1850; cited in; ibid, p. 65.
  28. ^ Webb, R.K. ed. Knud Haakonssen.“The emergence of Rational Dissent.”Enlightenment and Religion: Rational Dissent in eighteenth-century Britain. Cambridge University Press, Cambridge: 1996. p19.
  29. ^ Westfall, Richard S. Science and Religion in Seventeenth-Century England. 201页.
  30. ^ Marquard, Odo. "Burdened and Disemburdened Man and the Flight into Unindictability," in Farewell to Matters of Principle. Robert M. Wallace trans.伦敦:牛津大学出版社,1989。
  31. ^ Jacob, Margaret C. The Newtonians and the English Revolution: 1689–1720 [牛顿学说和英国革命:1689-1720]. 康奈尔大学出版社. 1976: 100–101 (英语).
  32. ^ Papers Show Isaac Newton's Religious Side, Predict Date of Apocalypse. The Associated Press. 2007-06-19 [2015-01-29]. (原始内容存档于2007-06-29) (英语).原文为:“This I mention not to assert when the time of the end shall be, but to put a stop to the rash conjectures of fanciful men who are frequently predicting the time of the end, and by doing so bring the sacred prophesies into discredit as often as their predictions fail.”
  33. ^ Cassels, Alan. Ideology and International Relations in the Modern World. p2.
  34. ^ Don Juan (1821), Canto 10, Verse I. In Jerome J. McGann (ed.), Lord Byron: The Complete Poetical Works (1986), Vol. 5, 437.“When Newton saw an apple fall, he found / In that slight startle from his contemplation -- / 'Tis said (for I'll not answer above ground / For any sage's creed or calculation) -- / A mode of proving that the earth turn'd round / In a most natural whirl, called "gravitation;" / And this is the sole mortal who could grapple, / Since Adam, with a fall or with an apple.”
  35. ^ Conduitt, John. Keynes Ms. 130.4:Conduitt's account of Newton's life at Cambridge. Newtonproject. [2006-08-30]. (原始内容存档于2006-10-04) (英语)In the year 1666 he retired again from Cambridge to his mother in Lincolnshire. Whilst he was pensively meandering in a garden it came into his thought that the power of gravity (which brought an apple from a tree to the ground) was not limited to a certain distance from earth, but that this power must extend much further than was usually thought. Why not as high as the Moon said he to himself & if so, that must influence her motion & perhaps retain her in her orbit, whereupon he fell a calculating what would be the effect of that supposition.
  36. ^ Trivia on Sir Isaac Newton's Theory of Gravity and the Falling Apple |Trivia Library
  37. ^ “when formerly, the notion of gravitation came into his mind. It was occasioned by the fall of an apple, as he sat in contemplative mood. Why should that apple always descend perpendicularly to the ground, thought he to himself. Why should it not go sideways or upwards, but constantly to the earth's centre.”
  38. ^ “Sir Isaac Newton walking in his gardens, had the first thought of his system of gravitation, upon seeing an apple falling from a tree.”
  39. ^ Wilson, Fred L. History of Science: Newton [科学史:牛顿]. Fred Wilson's Physics Web. [2015-01-29]. (原始内容存档于2007-06-30) (英语). citing: Delambre, M. "Notice sur la vie et les ouvrages de M. le comte J. L. Lagrange," Oeuvres de Lagrange I. Paris, 1867, p. xx.原文为“the most fortunate, for we cannot find more than once a system of the world to establish.”
  40. ^ 原文为:“If I have seen further it is by standing on the shoulders of giants”
  41. ^ Gribbin, John. Science: A History 1543-2001. New York: Allen Lane. 2002: 164. ISBN 9780713995039.
  42. ^ White, Michael. Isaac Newton: The Last Sorcerer. London: Fourth Estate. 1997: 187. ISBN 9781857024166.
  43. ^ Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton (1855) by Sir David Brewster (Volume II. Ch. 27)。原文为“I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”
  44. ^ Newton's alchemical works [牛顿的炼金术著作]印第安纳大学网站.[2015-01-29]. (原始内容存档于2007-12-13) (英语).
  45. ^ 牛顿的苹果枝. 冯北方 (责任编辑). 天津网, 央视网. 2012-04-04[2017-02-26] (中文(中国大陆)‎).
  46. ^ 潘卓盈. 苹果并没有砸到牛顿的头 可这并不影响 “牛顿苹果树”全球开枝散叶. 杭州都市快报. 2015-11-08: A24版 [2017-02-26] (中文(中国大陆)‎).
  47. ^ 苹果Logo缺一角是致敬图灵?想多了. 王凤枝_NT2541 (责任编辑). 台湾中央通讯社参考消息网 (转载网站), 网易 (转载网站). 2016-04-01 [2017-03-12]. (原始内容存档于2017-03-12) (中文(中国大陆)‎).
  48. ^ 《大海行时代5》航海家艾萨克·牛顿人物介绍游侠网. 2017-03-10[2017-03-12] (中文(中国大陆)‎).
  49. ^ 《帮助牛顿》上架iOS 国人出品独立趣味作品. "yuerenyu_JZ" (责任编辑). 太平洋游戏网. 2015-09-07 [2017-02-26]. (原始内容存档于2017-02-26) (中文(中国大陆)‎).
  50. ^ 爱因斯坦和牛顿打架谁厉害 创意游戏《科学格斗》. 新浪游戏. 2016-03-30 [2017-02-26] (中文(中国大陆)‎).
  51. ^ 小熊桑. 牛顿胖揍爱因斯坦 网友打造脑洞游戏《科学格斗(Science Combat)》游民星空. 2016-03-01 [2017-02-26] (中文(中国大陆)‎).

来源

书籍
  • E.T. BellMen of Mathematics: The Lives and Achievements of the Great Mathematicians from Zeno to Poincare [数学大师:从芝诺到庞加莱]. 纽约: Simon and Schuster. 1937. ISBN 0-671-46400-0 (英语).
  • Christianson, Gale. In the Presence of the Creator: Isaac Newton & his times [面对造物者:牛顿及其时代]. 纽约: Free Press. 1984. ISBN 0-02-905190-8 (英语).
  • Westfall, Richard S. Never at Rest [永不止息]. 剑桥大学出版社. 1980, 1998. ISBN 0-521-27435-4 (英语).
  • Craig, John. Isaac Newton and the Counterfeiters. Notes and Records of the Royal Society (18) [皇家学会的笔录和档案]. 伦敦: 皇家学会. 1963 (英语).
  • Gardner, Chance; John Anthony West. The Invisible Science. Magical Egypt. 2005 (英语).
网页

延伸阅读

书籍
论文

外部链接

 


Sir Isaac Newton PRS (25 December 1642 – 20 March 1726/27[a]) was an English mathematician, physicistastronomer, theologian, and author (described in his own day as a "natural philosopher") who is widely recognised as one of the most influential scientists of all time and as a key figure in the scientific revolution. His book Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687, laid the foundations of classical mechanics. Newton also made seminal contributions to optics, and shares credit with Gottfried Wilhelm Leibniz for developing the infinitesimal calculus.

In Principia, Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint until it was superseded by the theory of relativity. Newton used his mathematical description of gravity to prove Kepler's laws of planetary motion, account for tides, the trajectories of comets, the precession of the equinoxes and other phenomena, eradicating doubt about the Solar System's heliocentricity. He demonstrated that the motion of objects on Earth and celestial bodies could be accounted for by the same principles. Newton's inference that the Earth is an oblate spheroid was later confirmed by the geodetic measurements of MaupertuisLa Condamine, and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems.

Newton built the first practical reflecting telescope and developed a sophisticated theory of colour based on the observation that a prism separates white light into the colours of the visible spectrum. His work on light was collected in his highly influential book Opticks, published in 1704. He also formulated an empirical law of cooling, made the first theoretical calculation of the speed of sound, and introduced the notion of a Newtonian fluid. In addition to his work on calculus, as a mathematician Newton contributed to the study of power series, generalised the binomial theorem to non-integer exponents, developed a method for approximating the roots of a function, and classified most of the cubic plane curves.

Newton was a fellow of Trinity College and the second Lucasian Professor of Mathematics at the University of Cambridge. He was a devout but unorthodox Christian who privately rejected the doctrine of the Trinity. Unusually for a member of the Cambridge faculty of the day, he refused to take holy orders in the Church of England. Beyond his work on the mathematical sciences, Newton dedicated much of his time to the study of alchemy and biblical chronology, but most of his work in those areas remained unpublished until long after his death. Politically and personally tied to the Whig party, Newton served two brief terms as Member of Parliament for the University of Cambridge, in 1689–90 and 1701–02. He was knighted by Queen Anne in 1705 and spent the last three decades of his life in London, serving as Warden (1696–1700) and Master (1700–1727) of the Royal Mint, as well as president of the Royal Society (1703–1727).

niú dùn niú dùn
  (1642.12.25—1727.3.20) 英国物理学家和数学家
No. 3
  米-千克-秒制中力的单位,1牛顿等于对1千克质量产生1米/秒 2 加速度的力
No. 4
  (isaacnewton,1643-1727)英国物理学家、数学家。经典物理学创始人。毕业于剑桥大学。剑桥大学教授,英国皇家学会会员。发现万有引力定律,确立力学运动三大定律。建立宇宙的物理图像,在该图像中时间与空间均是绝对的,奠定经典物理学基础。研究光的本性,提出光的微粒说,发现白光是由色光构成的。创制反射望远镜,考察行星运动规律,解释潮汐现象。数学上建立微积分基础,创立二项式定理等。著有《自然哲学的数学原理》、《光学》等。
No. 5
  牛顿可以指:
人物
  艾萨克·牛顿,英国著名科学家。
  (详见艾萨克·牛顿
  艾萨克·牛顿爵士,frs(sir isaac newton,1643年1月4日-1727年3月31日)是一位英格兰物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。
约翰·牛顿[/b
  ],英国牧师。
  约翰·牛顿(john newton,1725年7月24日╟1807年12月21日),英国牧师。之前从事大西洋上的贩奴生意,在皈依基督教并放弃其生意之后,写出了著名的赞美诗《奇异恩典》(amazing grace)。
  1725年7月24日,约翰·牛顿出生于英国伦敦,是一个从事地中海贸易的船长的儿子。牛顿曾和他父亲共同出海6次直到1742年他父亲去世。在1743年他应征进入海军,在皇家海军“哈维奇”号上作为海军少尉替补军官服役。
物理与数学
  牛顿 (国际单位),一种衡量受力大小的国际单位。
  在物理中牛顿(newton,符号为n)是力的公制单位。它是以发现经典力学的伊萨克·牛顿(sir isaac newton)命名。
  牛顿是一个国际单位制导出单位,它是由kg·m·s−2的国际单位制基本单位导出。
牛顿运动定律
  牛顿运动定律是伊萨克·牛顿提出了物理学的三个运动定律的总称,被誉为是经典物理学的基础。
牛顿法
  牛顿法(newton's method)又称为牛顿-拉夫逊方法(newton-raphson method),它是一种在实数域和复数域上近似求解方程的方法. 方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根.
其它
  apple newton,由苹果电脑公司制造的掌上电脑。
  newton世界上第一款掌上电脑,由苹果电脑公司于1993年开始制造,但是因为newton在市场上找不到其定位而需求量低而停止发展,1997年停止了生产。
艾萨克·牛顿的生平
  我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。
    ——牛顿
牛顿的勤奋学习
  一谈到近代科学开创者牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。
  牛顿爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。
  当时,封建社会的英国等级制度很严重,中小学里学习好的学生,可以歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮?我一定要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。 过刻苦钻研,牛顿的学习成绩不断提高,不久就超过了曾欺侮过他的那个同学,名列班级前茅。
  时间对人是一视同仁的,给人以同等的量,但人对时间的利用不同,而所得的知识也大不一样。
  牛顿十六岁时数学知识还很肤浅,对高深的数学知识甚至可以说是不懂。“知识在于积累,聪明来自学习”。牛顿下决心靠自己的努力攀上数学的高峰。在基础差的不利条件下,牛顿能正确认识自己,知难而进。他从基础知识、基本公式重新学起,扎扎实实、步步推进。他研究完了欧几里德几何学后,又研究笛卡儿几何学,对比之下觉得欧几里德几何学肤浅,便悉心钻研笛氏几何学,直到掌握要领、融会贯通。遂之发明了代数二项式定理。传说中牛顿“大暴风中算风力”的佳话,可为牛顿身体力学的佐证。有一天,天刮着大风暴。风撒野地呼号着,尘土飞扬,迷迷漫漫,使人难以睁眼。牛顿认为这是个准确地研究和计算风力的好机会。于是,便拿着用具,独自在暴风中来回奔走。他踉踉跄跄、吃力地测量着。几次沙尘迷了眼睛,几次风吹走了算纸,几次风使他不得不暂停工作,但都没有动摇他求知的欲望。他一遍又一遍,终于求得了正确的数据。他快乐极了,急忙跑回家去,继续进行研究。
  有志者事竟成。经过勤奋学习,牛顿为自己的科学高塔打下了深厚的基础。不久,牛顿的数学高塔就建成了,二十二岁时发明了微分学,二十三岁时发明了积分学,为人类科学事业作出了巨大贡献。
  牛顿是个十分谦虚的人,从不自高自大。曾经有人问牛顿:“你获得成功的秘诀是什么?”牛顿回答说:“假如我有一点微小成就的话,没有其它秘诀,唯有勤奋而已。”
  少年牛顿
  1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来。谁也没有料到这个看起来微不足道的小东西会成为了一位震古烁今的科学巨人,并且竟活到了85岁的高龄。
  牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后夫所生的一子二女回到牛顿身边。牛顿自幼沉默寡言,性格倔强,这种习性可能来自它的家庭处境。
  大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常,成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。
  传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。
  牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。
  牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象由好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁的作些小工具、小技巧、小发明、小试验。
  当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能影响牛顿晚年的宗教生活。从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。
  后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。有一次,他去郊外游玩,之后靠在一棵苹果树下休息,忽然,一个苹果从树上掉下来。他觉得很奇怪,为什么苹果会从上往下掉而不是从下往上掉?他带着这个疑问回到了家里研究,后来他发现原来地球是有引力的能把物体吸住。随后,就出现了《牛顿物理引力学》。
求学岁月
  1661年,19岁的牛顿以减费生的身份进入剑桥大学三一学院,靠为学院做杂务的收入支付学费,1664年成为奖学金获得者,1665年获学士学位。
  17世纪中叶,剑桥大学的教育制度还渗透着浓厚的中世纪经院哲学的气味,当牛顿进入剑桥时,哪里还在传授一些经院式课程,如逻辑、古文、语法、古代史、神学等等。两年后三一学院出现了新气象,卢卡斯创设了一个独辟蹊径的讲座,规定讲授自然科学知识,如地理、物理、天文和数学课程。
  讲座的第一任教授伊萨克·巴罗是个博学的科学家。这位学者独具慧眼,看出了牛顿具有深邃的观察力、敏锐的理解力。于是将自己的数学知识,包括计算曲线图形面积的方法,全部传授给牛顿,并把牛顿引向了近代自然科学的研究领域。
  在这段学习过程中,牛顿掌握了算术、三角,读了开普勒的《光学》,笛卡尔的《几何学》和《哲学原理》,伽利略的《两大世界体系的对话》,胡克的《显微图集》,还有皇家学会的历史和早期的哲学学报等。
  牛顿在巴罗门下的这段时间,是他学习的关键时期。巴罗比牛顿大12岁,精于数学和光学,他对牛顿的才华极为赞赏,认为牛顿的数学才超过自己。后来,牛顿在回忆时说道:“巴罗博士当时讲授关于运动学的课程,也许正是这些课程促使我去研究这方面的问题。”
  当时,牛顿在数学上很大程度是依靠自学。他学习了欧几里得的《几何原本》、笛卡儿的《几何学》、沃利斯的《无穷算术》、巴罗的《数学讲义》及韦达等许多数学家的著作。其中,对牛顿具有决定性影响的要数笛卡儿的《几何学》和沃利斯的《无穷算术》,它们将牛顿迅速引导到当时数学最前沿~解析几何与微积分。1664年,牛顿被选为巴罗的助手,第二年,剑桥大学评议会通过了授予牛顿大学学士学位的决定。
  1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。
  由于牛顿在剑桥受到数学和自然科学的熏陶和培养,对探索自然现象产生浓厚的兴趣,家乡安静的环境又使得他的思想展翅飞翔。1665~1666年这段短暂的时光成为牛顿科学生涯中的黄金岁月,他在自然科学领域内思潮奔腾,才华迸发,思考前人从未思考过的问题,踏进了前人没有涉及的领域,创建了前所未有的惊人业绩。
  1665年初,牛顿创立级数近似法,以及把任意幂的二项式化为一个级数的规则;同年11月,创立正流数法(微分);次年1月,用三棱镜研究颜色理论;5月,开始研究反流数法(积分)。这一年内,牛顿开始想到研究重力问题,并想把重力理论推广到月球的运动轨道上去。他还从开普勒定律中推导出使行星保持在它们的轨道上的力必定与它们到旋转中心的距离平方成反比。牛顿见苹果落地而悟出地球引力的传说,说的也是此时发生的轶事。
  总之,在家乡居住的两年中,牛顿以比此后任何时候更为旺盛的精力从事科学创造,并关心自然哲学问题。他的三大成就:微积分、万有引力、光学分析的思想都是在这时孕育成形的。可以说此时的牛顿已经开始着手描绘他一生大多数科学创造的蓝图。
  1667年复活节后不久,牛顿返回到剑桥大学,10月1日被选为三一学院的仲院侣(初级院委),翌年3月16日获得硕士学位,同时成为正院侣(高级院委)。1669年10月27日,巴罗为了提携牛顿而辞去了教授之职,26岁的牛顿晋升为数学教授,并担任卢卡斯讲座的教授。巴罗为牛顿的科学生涯打通了道路,如果没有牛顿的舅父和巴罗的帮助,牛顿这匹千里马可能就不会驰骋在科学的大道上。巴罗让贤,这在科学史上一直被传为佳话。
  伟大的成就~建立微积分
  在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。
  笛卡尔的解析几何把描述运动的函数关系和几何曲线相对应。牛顿在老师巴罗的指导下,在钻研笛卡尔的解析几何的基础上,找到了新的出路。可以把任意时刻的速度看是在微小的时间范围里的速度的平均值,这就是一个微小的路程和时间间隔的比值,当这个微小的时间间隔缩小到无穷小的时候,就是这一点的准确值。这就是微分的概念。
  求微分相当于求时间和路程关系得在某点的切线斜率。一个变速的运动物体在一定时间范围里走过的路程,可以看作是在微小时间间隔里所走路程的和,这就是积分的概念。求积分相当于求时间和速度关系的曲线下面的面积。牛顿从这些基本概念出发,建立了微积分。
  微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的努力加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
  牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
  在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
  应该说,一门科学的创立决不是某一个人的业绩,它必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样,是牛顿和莱布尼茨在前人的基础上各自独立的建立起来的。
  1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如,他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
  牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
伟大的成就~对光学的三大贡献
  在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说……
  牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。
  牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文。
  许多人研究光学是为了改进折射望远镜。牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。
  牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。反射望远镜的发明奠定了现代大型光学天文望远镜的基础。
  同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。
  牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘等多种光学仪器。
伟大的成就~构筑力学大厦
  牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。
  在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。
  早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。
  1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。
  牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……
  一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。
  牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。
  当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。
  在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。
  牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。
站在巨人的肩上
  牛顿的研究领域非常广泛,他除了在数学、光学、力学等方面做出卓越贡献外,他还花费大量精力进行化学实验。他常常六个星期一直留在实验室里,不分昼夜的工作。他在化学上花费的时间并不少,却几乎没有取得什么显著的成就。为什么同样一个伟大的牛顿,在不同的领域取得的成就竟那么不一样呢?
  其中一个原因就是各个学科处在不同的发展阶段。在力学和天文学方面,有伽利略、开普勒、胡克、惠更斯等人的努力,牛顿有可能用已经准备好的材料,建立起一座宏伟壮丽的力学大厦。正象他自己所说的那样“如果说我看得远,那是因为我站在巨人的肩上”。而在化学方面,因为正确的道路还没有开辟出来,牛顿没法走到可以砍伐材料的地方。
  牛顿在临终前对自己的生活道路是这样总结的:“我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。”
  这当然是牛顿的谦逊。
怪异的牛顿
  牛顿并不善于教学,他在讲授新近发现的微积分时,学生都接受不了。但在解决疑难问题方面的能力,他却远远超过了常人。还是学生时,牛顿就发现了一种计算无限量的方法。他用这个秘密的方法,算出了双曲面积到二百五十位数。他曾经高价买下了一个棱镜,并把它作为科学研究的工具,用它试验了白光分解为的有颜色的光。
  开始,他并不愿意发表他的观察所得,他的发现都只是一种个人的消遣,为的是使自己在寂静的书斋中解闷,他独自遨游于自己所创造的超级世界里。后来,在好友哈雷的竭力劝说下,才勉强同意出版他的手稿,才有划时代巨著《自然哲学的数学原理》的问世。
  作为大学教授,牛顿常常忙得不修边幅,往往领带不结,袜带不系好,马裤也不纽扣,就走进了大学餐厅。有一次,他在向一位姑娘求婚时思想又开了小差,他脑海了只剩下了无穷量的二项式定理。他抓住姑娘的手指,错误的把它当成通烟斗的通条,硬往烟斗里塞,痛得姑娘大叫,离他而去。牛顿也因此终生未娶。
  牛顿从容不迫地观察日常生活中的小事,结果作出了科学史上一个个重要的发现。他马虎拖沓,曾经闹过许多的笑话。一次,他边读书,边煮鸡蛋,等他揭开锅想吃鸡蛋时,却发现锅里是一只怀表。还有一次,他请朋友吃饭,当饭菜准备好时,牛顿突然想到一个问题,便独自进了内室,朋友等了他好久还是不见他出来,于是朋友就自己动手把那份鸡全吃了,鸡骨头留在盘子,不告而别了。等牛顿想起,出来后,发现了盘子里的骨头,以为自己已经吃过了,便转身又进了内室,继续研究他的问题。
牛顿晚年
  但是由于受时代的限制,牛顿基本上是一个形而上学的机械唯物主义者。他认为运动只是机械力学的运动,是空间位置的变化;宇宙和太阳一样是没有发展变化的;靠了万有引力的作用,恒星永远在一个固定不变的位置上……
  随着科学声誉的提高,牛顿的政治地位也得到了提升。1689年,他被当选为国会中的大学代表。作为国会议员,牛顿逐渐开始疏远给他带来巨大成就的科学。他不时表示出对以他为代表的领域的厌恶。同时,他的大量的时间花费在了和同时代的著名科学家如胡克、莱布尼兹等进行科学优先权的争论上。
  晚年的牛顿在伦敦过着堂皇的生活,1705年他被安妮女王封为贵族。此时的牛顿非常富有,被普遍认为是生存着的最伟大的科学家。他担任英国皇家学会会长,在他任职的二十四年时间里,他以铁拳统治着学会。没有他的同意,任何人都不能被选举。
  晚年的牛顿开始致力于对神学的研究,他否定哲学的指导作用,虔诚地相信上帝,埋头于写以神学为题材的著作。当他遇到难以解释的天体运动时,竟提出了“神的第一推动力”的谬论。他说“上帝统治万物,我们是他的仆人而敬畏他、崇拜他”。
  1727年3月20日,伟大艾萨克·牛顿逝世。同其他很多杰出的英国人一样,他被埋葬在了威斯敏斯特教堂。他的墓碑上镌刻着:
  让人们欢呼这样一位多么伟大的
  人类荣耀曾经在世界上存在。
艾萨克·牛顿的信仰
  a.“毫无疑问,我们所看到的这个世界,其中各种形式是如此绚丽多彩,各种运动是如此错综复杂,它不是别的,而只能出于指导和主宰万物的上帝的自由意志。”——见《牛顿自然哲学著作选》第158页
  b.“现在我们可以更趋近一步去欣赏这大自然的美并使自己陶醉于愉快的深思之中,从而更深刻地激起我们对伟大的创世主和万物主宰的敬爱和崇拜的心情,这才是哲学的最优美和最有价值的果实。如果有谁从事物的这些最明智最完善的设计中看不到全能创世主的无穷智慧和善良意志,那么他一定是个瞎子,而如果拒绝承认这些,那他一定是一个毫无感情的疯人。”——见《牛顿自然哲学著作选》第160页
  c.“……但是,作为一个虔诚的教徒,牛顿很早就在他的自然科学工作里刻上了神学的印记,牛顿的家庭宗教气氛浓厚,他的继父和舅父都是牧师,抚养他长大的外祖母和母亲都是虔诚的教徒,他们送牛顿上剑桥大学的目的,是希望他将来作牧师。1678年,牛顿在剑桥毕业时,按照一般贯例,理应接受神职。但是,牛顿却公开声明,为了更好地“侍奉上帝”,他将不接受神职,而代之以自然哲学的研究来证明上帝的存在,从而赢得了英王查理二世的特许。因此,他在科学研究里,处处调和科学和神学,他说:‘从事物的表象来论上帝,无疑是自然哲学份内的事。只有在科学工作里揭示和发现上帝对万物的最聪明和最巧妙的安排,以及最终的原因,才对上帝有所认识’。”——摘自《牛顿自然哲学著作选》序第5-6页
  d.“在牛顿的后期,他在资本主义世界里青云直上以后,资产阶级的动摇、妥协的一面完全支配了他,他在神学、唯心论道路上越走越远了。他埋头于炼金术的研究,写下了大量的笔记和文章;他热衷于年代学和神学,拼命考证圣经里的事迹和古希腊、埃及传说的“科学”年代,妄图证实但以理先知梦中看见的巨兽头上十只角是十个王国,一只小角是罗马教会,他还埋头于约翰启示录的研究等等。在留给他的侄女婿的大量遗稿中,有关宗教、神学、年代学的著作竟达一百五十万字。这些徒劳无益的工作占据了他的整个后半生,使他完全沦落为神学的奴仆。在牛顿的后半生里,主流是唯心论。牛顿的自然哲学只能在上帝那里找到他的最后归宿。”——摘自《牛顿自然哲学著作选》序第11-12页
艾萨克·牛顿简介
  艾萨克·牛顿,Isaac newton(1643年1月4日—1727年3月20日)是英国伟大的数学家、物理学家、天文学家和自然哲学家,同时他也是一个神学爱好者,晚年曾着力研究神学。1643年1月4日生于英格兰林肯郡格兰瑟姆附近的沃尔索普村,1727年3月20日在伦敦病逝。
  牛顿1661年入英国剑桥大学圣三一学院,1665年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。1667年回剑桥后当选为圣三一学院院委,次年获硕士学位。1669年任卢卡斯教授直到1701年。1696年任皇家造币厂监督,并移居伦敦。1703年任英国皇家学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学与神学。
  牛顿在科学上最卓越的贡献是创建了微积分和经典力学。
  备注:牛顿是儒略历1642年12月25日 即格里历(阳历)1643年1月4日 所以正确的出生日期是1月4号
牛顿-个人荣誉
  牛顿被誉为人类历史上最伟大的科学家之一。
  发明了微积分,发现了万有引力定律和经典力学.
艾萨克·牛顿的名言
  1、如果说我所看的比笛卡尔更远一点,那是因为站在巨人肩上的缘故。---牛顿(英国)
  2、无知识的热心,犹如在黑暗中远征。---牛顿(英国) 牛顿
  3、你该将名誉作为你最高人格的标志。---牛顿(英国)
  4、我的成就,当归功于精微的思索。---牛顿(英国)
  5、你若想获得知识,你该下苦功;你若想获得食物,你该下苦功;你若想得到快乐,你也该下苦功,因为辛苦是获得一切的定律。---牛顿(英国)
  6、聪明人之所以不会成功,是由于他们缺乏坚韧的毅力。---牛顿(英国)
  7、胜利者往往是从坚持最后五分钟的时间中得来成功。---牛顿(英国)
  8、我不知道世人怎样看我,但我自己以为我不过像一个在海边玩耍的孩子,不时为发现比寻常更为美丽的一块卵石或一片贝壳而沾沾自喜,至于展现在我面前的浩翰的真理海洋,却全然没有发现。---牛顿(英国)
力学单位,国际单位单位制导出单位
  牛顿(国际单位),是一种衡量力的大小的国际单位。
  在物理中牛顿(Newton,符号为N)是力的公制单位。它是以发现经典力学的艾萨克·牛顿(Sir Isaac Newton)命名。
  牛顿是一个国际单位制导出单位,它是由kg·m·s^−2的国际单位制基本单位导出,
  能使一千克质量的物体获得1m/s^2的加速度所需的力的大小定义为1牛顿
牛顿-拉夫逊法
  牛顿法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。
牛顿与二项式定理
  在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理把能为直接计算所发现的
  等简单结果推广如下的形式
  推广形式
  二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。
创建微积分
  牛顿在数学上最卓越的成就是创建微积分。他超越前人的功绩在于,他将古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法--微分和积分,并确立了这两类运算的互逆关系,如:面积计算可以看作求切线的逆过程。
  那时莱布尼兹刚好亦提出微积分研究报告,更因此引发了一场微积分发明专利权的争论,直到莱氏去世才停息。而后世己认定微积是他们同时发明的。
  微积分方法上,牛顿所作出的极端重要的贡献是,他不但清楚地看到,而且大胆地运用了代数所提供的大大优越于几何的方法论。他以代数方法取代了卡瓦列里、格雷哥里、惠更斯和巴罗的几何方法,完成了积分的代数化。从此,数学逐渐从感觉的学科转向思维的学科。
  微积产生的初期,由于还没有建立起巩固的理论基础,被有些别有用心者钻空子。更因此而引发了著名的第二次数学危机。这个问题直到十九世纪极限理论建立,才得到解决。
推进方程论,开拓变分法
  牛顿在代数方面也作出了经典的贡献,他的《广义算术》大大推动了方程论。他发现实多项式的虚根必定成双出现,求多项式根的上界的规则,他以多项式的系数表示多项式的根n次幂之和公式,给出实多项式虚根个数的限制的笛卡儿符号规则的一个推广。
  牛顿在还设计了求数值方程的实根近似值的对数和超越方程都适用的一种方法,该方法的修正,现称为牛顿方法。
  牛顿在力学领域也有伟大的发现,这是说明物体运动的科学。第—运动定律是伽利略发现的。这个定律阐明,如果物体处于静止或作恒速直线运动,那么只要没有外力作用,它就仍将保持静止或继续作匀速直线运动。这个定律也称惯性定律,它描述了力的一种性质:力可以使物体由静止到运动和由运动到静止,也可以使物体由一种运动形式变化为另一种形式。此被称为牛顿第一定律。力学中最重要的问题是物体在类似情况下如何运动。牛顿第二定律解决了这个问题;该定律被看作是古典物理学中最重要的基本定律。牛顿第二定律定量地描述了力能使物体的运动产生变化。它说明速度的时间变化率(即加速度a与力F成正比,而与物体的质量里成反比,即a=F/m或F=ma;力越大,加速度也越大;质量越大,加速度就越小。力与加速度都既有量值又有方向。加速度由力引起,方向与力相同;如果有几个力作用在物体上,就由合力产生加速度,第二定律是最重要的,动力的所有基本方程都可由它通过微积分推导出来。
  此外,牛顿根据这两个定律制定出第三定律。牛顿第三定律指出,两个物体的相互作用总是大小相等而方向相反。对于两个直接接触的物体,这个定律比较易于理解。书本对子桌子向下的压力等于桌子对书本的向上的托力,即作用力等于反作用力。引力也是如此,飞行中的飞机向上拉地球的力在数值上等于地球向下拉飞机的力。牛顿运动定律广泛用于科学和动力学问题上。
牛顿运动定律
  牛顿运动定律是艾萨克·牛顿提出了物理学的三个运动定律的总称,被誉为是经典物理学的基础。
  为“牛顿第一定律(惯性定律:一切物体在不受任何外力的作用下,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——它明确了力和运动的关系及提出了惯性的概念)”、“牛顿第二定律(物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。)公式:F=ma”、“牛顿第三定律(两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。)”
  牛顿法
  解非线性方程f(x)=0的牛顿(Newton) 法,就是将非线性方程线性化的一种方法。它是解代数方程和超越方程的有效方法之 一。
  一 牛顿法的基本思想
  把非线性函数f(x)在 处展开成 泰勒级数
  f(x)=f( )+(x- )f′( )+(x- ) + …
  取其线性部分,作为非线性方程f(x)=0的近似方程,则有
  f( )+(x- ) f′( )=0
  设f′( )≠0,则其解为x = - (1)
  再把f(x)在x 处展开为泰勒级数,取其线性部分为f(x)=0的近似方程,若
  f′(x ) ≠0,则得x = - 如此继续下去,得到牛顿法的迭代公式:x = -  (n=0,1,2,…) (2)
  例1 用牛顿法求方程f(x)=x +4x -10=0在[1,2]内一个实根,取初始近似值x =1.5。 
  解 f′(x)=3x +8x所以迭代公式为:
  x = - n=0,1, 2,…
牛顿的勤奋学习
  一谈到近代科学开创者牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。
  牛顿爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。
  时间对人是一视同仁的,给人以同等的量,但人对时间的利用不同,而所得的知识也大不一样。
  牛顿十六岁时数学知识还很肤浅,对高深的数学知识甚至可以说是不懂。“知识在于积累,聪明来自学习”。牛顿下决心靠自己的努力攀上数学的高峰。在基础差的不利条件下,牛顿能正确认识自己,知难而进。他从基础知识、基本公式重新学起,扎扎实实、步步推进。他研究完了欧几里德几何学后,又研究笛卡儿几何学,对比之下觉得欧几里德几何学肤浅,便悉心钻研笛氏几何学,直到掌握要领、融会贯通。遂之发明了代数二项式定理。传说中牛顿“大暴风中算风力”的佳话,可为牛顿身体力学的佐证。有一天,天刮着大风暴。风撒野地呼号着,尘土飞扬,迷迷漫漫,使人难以睁眼。牛顿认为这是个准确地研究和计算风力的好机会。于是,便拿着用具,独自在暴风中来回奔走。他踉踉跄跄、吃力地测量着。几次沙尘迷了眼睛,几次风吹走了算纸,几次风使他不得不暂停工作,但都没有动摇他求知的欲望。他一遍又一遍,终于求得了正确的数据。他快乐极了,急忙跑回家去,继续进行研究。
  有志者事竟成。经过勤奋学习,牛顿为自己的数学高塔打下了深厚的基础。不久,牛顿的数学高塔就建成了,二十二岁时发明了微分学,二十三岁时发明了积分学,为人类数学事业作出了巨大贡献。
  牛顿是个十分谦虚的人,从不自高自大。曾经有人问牛顿:“你获得成功的秘诀是什么?”牛顿回答说:“假如我有一点微小成就的话,没有其它秘诀,唯有勤奋而已。”
  少年牛顿
  1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来。谁也没有料到这个看起来微不足道的小东西会成为了一位震古烁今的科学巨人,并且竟活到了84岁的高龄。
  牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后夫所生的一子二女回到牛顿身边。牛顿自幼沉默寡言,性格倔强,这种习性可能来自它的家庭处境。
  大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常,成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。
  传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。
  牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。
  牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象由好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁的作些小工具、小技巧、小发明、小试验。
  当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能影响牛顿晚年的宗教生活。从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。
  后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。据说有一次,他去郊外游玩,之后靠在一棵苹果树下休息,忽然,一个苹果从树上掉下来。他觉得很奇怪,为什么苹果会从上往下掉而不是从下往上升?他带着这个疑问回到了家里研究,后来他通过论证发现原来地球是有引力的能把物体吸住。随后,就出现了《牛顿物理引力学》。
怪异的牛顿
  牛顿并不善于教学,他在讲授新近发现的微积分时,学生都接受不了。但在解决疑难问题方面的能力,他却远远超过了常人。还是学生时,牛顿就发现了一种计算无限量的方法。他用这个秘密的方法,算出了双曲面积到二百五十位数。他曾经高价买下了一个棱镜,并把它作为科学研究的工具,用它试验了白光分解为的有颜色的光。
  开始,他并不愿意发表他的观察所得,他的发现都只是一种个人的消遣,为的是使自己在寂静的书斋中解闷,他独自遨游于自己所创造的超级世界里。后来,在好友哈雷的竭力劝说下,才勉强同意出版他的手稿,才有划时代巨著《自然哲学的数学原理》的问世。
  作为大学教授,牛顿常常忙得不修边幅,往往领带不结,袜带不系好,马裤也不纽扣,就走进了大学餐厅。有一次,他在向一位姑娘求婚时思想又开了小差,他脑海了只剩下了无穷量的二项式定理.牛顿小的时候有一位青梅竹马的小姑娘,但是当牛顿到剑桥去学习之后,小姑娘嫁给了另一位,而牛顿也专心于他的学业.后来,那位小姑娘后也与丈夫离婚了,当她去找牛顿时,牛顿深感自己已经属于科学,不能给她幸福,就忍痛割爱,拒绝了她.牛顿也因此终生未娶。
  牛顿从容不迫地观察日常生活中的小事,结果作出了科学史上一个个重要的发现。但他在生活中马虎拖沓,曾经闹过许多的笑话。一次,他边读书,边煮鸡蛋,等他揭开锅想吃鸡蛋时,却发现锅里是一只怀表。还有一次,他请朋友吃饭,当饭菜准备好时,牛顿突然想到一个问题,便独自进了内室,朋友等了他好久还是不见他出来,于是朋友就自己动手把那份鸡全吃了,鸡骨头留在盘子,不告而别了。等牛顿想起,出来后,发现了盘子里的骨头,以为自己已经吃过了,便转身又进了内室,继续研究他的问题。牛顿的性格也有阴暗的一面,他虽是人类科学史上罕见的天才,但在心理上从小就受狂躁症的困扰,以致在与莱布尼兹就微积分的发明权的争论和与胡克之间的争吵中失态!
  1.苹果的传说
  几乎所有的介绍牛顿的书上,还有许多教科书上都介绍一个关于牛顿的传奇故事:1665-1666之间,剑桥流行黑热病,剑桥大学被迫停学,刚从剑桥拿到学士 学位的牛顿回到家乡。一天牛顿坐在苹果树下看书,这时一只苹果落了下来,这启发这位当时年仅23岁的学生想到苹果是被地球的引力拉下来的,从而他就发现了 万有引力定理。
  尽管这个故事流传得非常广泛,不过近来严肃的历史学者都不认为是事实。
  这 个故事最早公诸于众的是由法国作家伏尔泰 (Voltaire,1694-1778),他是一位牛顿研究成果的热情鼓吹者。他1726年去英国,当年写了25篇通讯,其中第15篇通讯中有这个故 事,后来他说是听牛顿的侄女说的。其后在1752年一位比牛顿小45岁的朋友(William Stukeley)在回忆文章中说是牛顿去世前一年牛顿告诉他的,而牛顿是1727年去世的,他写文章时已经是牛顿去世后25年了。下面这张1磅英国钞票 的背面,印有牛顿的像,在牛顿头部的背后画着一株开花的苹果树,就是为了渲染这个故事、扩大它的影响。
  这 个故事至少有两点与已经了解的历史事实不符。第一,万有引力不是牛顿一个人的独立发现,而是历史上若干人研究的积累的结果,有的书上把万有引力以牛顿命 名,说成是牛顿万有引力就是这个故事的自然结果,是对历史的严重歪曲。第二,在1665年,牛顿对天体的运动规律问题还是一个门外汉,它把牛顿对万有引力 的研究成果提前了至少20年。
  万有引力发现的实际经过大致是:
  开普勒(J.Kepler,1571-1630)最早在探索行星运动规律时,认为引力就是太阳发出的类似于磁力的流,这些磁力流沿切线方向推动着行星公转, 其强度随离太阳的距离而减弱。开普勒还曾企图用磁作用机制解释椭圆轨道的产生。他还以月球与海水间的磁性吸引解释潮汐现象。
  1645年,法国天文学家布里阿德(I.Bulliadus)提出一个假设:“开普勒力的减少,和离太阳的距离的平方成反比”。这是第一次提出平方反比关系的思想。
  1661 年,英国皇家学会成立了一个专门委员会研究重力问题。罗伯特 胡克(Robert Hooke,1635-1703)、克里斯托夫 雷恩(Christopher Wren,1632-1723)、爱德蒙 哈雷(Edmund Halley,1656-1742)在引力问题的研究上都做出了重要贡献。
  早在1661年,罗伯特 胡克就已觉察到引力和地球上物体的重力有同样的本质。在1674年的一次演讲“证明地球周年运动的尝试”中,他提出要在一致的力学原则的基础上建立一个宇 宙学说,为此提出了以下三个假设:“第一,据我们在地球上的观察可知,一切天体都具有倾向其中心的吸引力,它不仅吸引其本身各部分,并且还吸引其作用范围 内的其他天体。因此,不仅太阳和月亮对地球的形状和运动发生影响,而且地球对太阳和月亮同样也有影响,连水星、金星、火星和木星对地球的运动都有影响。第 二,凡是正在作简单直线运动的任何天体,在没有受到其他作用力使其沿着椭圆轨道、圆周或复杂的曲线运动之前,它将继续保持直线运动不变。第三,受到吸引力 作用的物体,越靠近吸引中心,其吸引力也越大。至于此力在什么程度上依赖于距离的问题,在实验中我还未解决。一旦知道了这一关系,天文学家就很容易解决天 体运动的规律了。”胡克首先使用了“万有引力”这个词。他在这里提出的这三条假设,实际上已包含了有关万有引力的一切问题,所缺乏的只是定量的表述和论 证。
  在 1679年,胡克与牛顿之间进行了关于引力问题的交流,在1679年11月,牛顿致信胡克说:“自己关于发现周日运动的想象,即设想一个自由落体落到地球 上,通过地面进入地球内部,而不受任何物质的阻碍,则该落体将沿着一条螺旋形轨道运行,在旋转数圈后,最终旋入(或十分接近)地心。”胡克回信说,物体不 会按螺线运动,而是按“一种带椭圆状的曲线”运动,它的轨道将“像-椭圆”。1679年12月13日,牛顿写信给胡克说:“我同意你的意见,……如果假定 它的重力是均匀的,〔物体将〕不按螺线下沉那个真正的中心,而是以交替升降的形式运行。”
  我 们从后人清理牛顿同胡克的这些通信中看出,直至1679年,牛顿在天体运动的问题上,还是不得要领的,而且在这以前,关于万有引力问题已经有了许多重要结 果。对于万有引力问题,剩下的唯一问题就是在与距离平方成反比的万有引力作用下天体按椭圆轨道运行的严格证明,胡克写信向牛顿提出了这个问题。后来人们弄 清楚了,一直到1685年,牛顿还没有解决这个问题。1686年牛顿解决了它,并且在哈雷的催促下写出了《自然哲学的数学原理》一书。当胡克看到这本书稿 后,向牛顿提出把自己在这一方面的研究成果提一下,这个本来是合理的要求却遭到了牛顿的断然拒绝。牛顿向负责出版这本书的哈雷写信说他不想给胡克任何荣 誉,而且称在许多年前他就已经揭示了平方反比定律。指的就是1665年开始的苹果树下的思索。
  老年时的牛顿有一段回忆说:“同年(1666年)我开始把引力与月亮轨道联系起来,并找出了如何估计一个天体在球体内旋转时用来趋向球面的力的方法,……, 最后在1676和1677年之间的冬天我发现了一个命题:利用与距离平方成反比的离心力,行星必然环绕力的中心沿椭圆旋转,……。” 把牛顿的这段话与前面引的他与胡克的通信比较,可以看出在时间上是矛盾的。牛顿在这里把他发现万有引力的时间故意改写在1679年与胡克通信之前,而且造 出苹果神话,其目的显然是为了要独吞万有引力这项成果。
  牛顿和胡克之间的梁子,不仅表现在对万有引力发明权的争议上,最早表现在胡克对牛顿的光的微粒说有不同的看法,因为胡克对光的本质是站在波动说一边的。 1675年,牛顿向皇家学会递交了他关于光的第二篇论文,这篇论文又受到胡克的批评,并且说论文的一些观点是抄袭他的。这使牛顿无比愤怒,虽经皇家学会调解,牛顿的怒气未消,于1675年2月向胡克写了一封回击的信。信中说了与苹果故事流传得同样广的一句话:“如果我比笛卡尔看得更远,那是因为我站在巨人 们的肩膀上。”许多人把这句话理解为牛顿的谦虚精神,其实它是对胡克的一种讽刺和蔑视,完全不是人们望文生义的那回事。牛顿的原话是:“笛卡尔所做的是搭了一架好梯子,你在很多方面都把梯子升高了许多,特别是把薄膜的颜色引入哲学思考。如果我看得更远些,那是因为我站在巨人的肩膀上。” 牛顿不把胡克和笛卡尔看作巨人,牛顿也没有攀登他们所搭的梯子,他是站在比梯子更高的巨人肩膀上。而且,这句话更是对胡克的人身攻击——胡克身材矮小。由于牛顿与胡克的这种过节,所以牛顿的《光学》著作要等 到1703年胡克去世以后才于1704年出版。
  牛顿独占了万有引力的成果,还不足以解除对胡克的恨,当他于1703年被选为英国皇家学会的主席,就下令在皇家学会除去所有的胡克的肖像。所以当时英国许多著名的科学家中就是胡克的肖像没有留传下来。
  2.对弗拉姆斯蒂德观测数据的剽窃和盗版
  最近英国人大维 克拉克等写了一本书 ,通过一系列的来往书信和翔实的资料,专门揭露牛顿压制、阻挠天文学家弗拉姆斯蒂德等人的研究并且剽窃他们的成果。
  弗 拉姆斯蒂德(John Flamsteed,1646-1719)是英国首任皇家天文学家,是格林尼治(Greenwich)天文台的创始人,是现代精密天文观测的开拓者。他在 1676-1689年间共作了大约2万次观测,测量精度约为10",他对3000颗星的测量结果收入了著名的“不列颠星表”(Britannic Catalogue)。
  1675年,弗拉姆斯蒂德被英国国王任命为皇家天文台长,不过条件仍是十分艰苦,不仅得不到足够的办台经费,连年薪100英镑也经常拖欠。为了维持天文台的经费,他不得不用额外招收学员的学费来补足,在繁忙的工作之外还要为140名数学学生教课。
  1694 年开始,牛顿访问了弗拉姆斯蒂德并且向他索要关于月球运动的观测资料,此后牛顿为了验证万有引力理论,还多次写信给弗拉姆斯蒂德索取资料,弗拉姆斯蒂德都 满足了牛顿。弗拉姆斯蒂德1700年对他的朋友洛瑟普说:“‘牛顿’曾一度想使月球运行表符合他设想的定律,但是,当他开始将自己的定律与天体(即月球的 观测位置)进行比较时,他发现自己错了,并不得不全部抛弃自己的定律。我曾给他提供了二百个以上的月球的观测位置,人们会认为这些材料足以限定任何理论;既然他已修改了自己的理论,并把自己的理论调整到完全符合这些观察,所以他的理论描述了这些观察也就不足为奇了,但是,他还是为此而感激这些观察,甚于感 激他关于引力的臆测,这些臆测曾使他犯过错误。”
  其 时牛顿已是皇家学会主席,在索取资料的时候经常对弗拉姆斯蒂德的工作指指点点,有时还利用自己的高位来羞辱这位可敬的天文学家。这大大激怒了这位天文学 家。到1700年之后,他们之间就再没有通信了。牛顿获得了弗拉姆斯蒂德的资料,并且在他的《自然哲学的数学原理》中引用了这些资料,由于他们之间的这种 矛盾,在《原理》的第二版出版时(1713年)他将弗拉姆斯蒂德的名字删去了。
  然 而牛顿和他的支持者哈雷还是急切地需要弗拉姆斯蒂德的进一步的观测资料。他们希望弗拉姆斯蒂德出版他的观测资料,不过弗拉姆斯蒂德却总是认为要反复校核以 后才能出版。牛顿和哈雷所做的一件不道德的事是,他们未经弗拉姆斯蒂德的同意私自在1712年出版了弗拉姆斯蒂德以毕生精力得到的观测星图,共印刷了 400册,并且把其中的300册回送给弗拉姆斯蒂德。弗拉姆斯蒂德看着这些未经认真校核、充满错误、并且根据牛顿和哈雷理论的需要删改过的印刷品,很生气 地把它们全部焚毁了。后来他的星图经过仔细校核后,在他去世后由他的学生于1729年出版(《Atlas Coelestis》)。
  牛顿为了获取弗拉姆斯蒂德的观测资料,软硬兼施,牛顿以天文台是皇家学会的下属单位,观测结果应当属他这位皇家学会主席来支配,这样来以势压人。可是皇家学 会根本上没有供给弗拉姆斯蒂德足够的经费,一切设备都是他自筹来的。弗拉姆斯蒂德的愤怒可以从他给一位朋友(Abraham Sharp)的信中看出:“我和主席(牛顿)的另一个争执是,他形成了一个阴谋,想攫取我的仪器,而送我一个委员会,其中仅有他自己和两位物理学家。主席 热度很高并且过分下作。我预先告诉他,别动我的东西,并说明在观象台的所有的仪器都是我自己的,壁上的拱弧和珍贵的四分仪都是我自己出资做的,其余的是我 花自己的钱买的,而摩尔(Sir Jonas Moore)先生送我的六分仪和两只时钟,还有图奈里(Towneley)先生送我的测微尺,是我来皇家天文台之前若干年的事情。”
  关于牛顿与弗拉姆斯蒂德之间的分歧,不仅反映在他们做人的态度上的差别,而且反映在科学态度上的根本不同,英国哲学家拉卡托斯说得好:“牛顿的“月球理论” 是1702年在戴维 格利高利的《天文物理与基础几何》中首次发表的,这实际上是在《原理》一书第一版之后的许多年了。该理论镇静地声称牛顿的理论“与他用著名的弗拉姆斯蒂德 观测月亮的许多位置所证明的现象非常接近。”但我们必须记住,牛顿派从来不让观察的权威胜过他们的研究纲领,在他们的正面启发法的帮助下,他们提出了一个 又一个的理论以适应反例。但他们经常是根本无视观察到的反证:他们知道,不仅理论必须不断地受到观察的检验,而且观察也要受到他们的理论的检验。“最好的 观察”(牛顿派文献中常用的一个名词)是那些证认了他们的研究纲领的观察,这在牛顿和弗拉姆斯蒂德的通信当中透露得很清楚。弗拉姆斯蒂德这位首席皇家天文 学家是一个真正的未患精神分裂症的归纳主义者;他拒绝让牛顿及其同事们获得他对月亮所作的观察结果,从而比任何其他人都更大地放慢了他们的工作速度。最 初,牛顿和弗拉姆斯蒂德是经常通信的,但是,弗拉姆斯蒂德很快开始讨厌牛顿使用他的材料来检验自己的月球理论。”
  所以可以说,如果弗拉姆斯蒂德是一位观测和归纳的巨人的话,牛顿确实是一位踩着这位巨人肩膀爬上去的大人物。
  3.在微积分发明权上导演对莱布尼兹的指控
  关于牛顿与莱布尼兹(Gottfried Wilhelm Leibniz,1646-1716)关于微积分首创权的争议,已经有许多著作叙述过,著名的英国物理学家霍金在《时间简史》中叙述得比较简明,他说:“ 他(牛顿)和德国哲学家高特夫瑞德•莱布尼兹之间发生了更严重的争吵。莱布尼兹和牛顿各自独立地发展了叫做微积分的数学分支,它是大部分近代物理的基础。 虽然现在我们知道,牛顿发现微积分要比莱布尼兹早若干年,可是他很晚才出版他的著作。随着关于谁是第一个发现者的严重争吵的发生,科学家们激烈地为双方作 辩护。然而值得注意的是,大多数为牛顿辩护的文章均出自牛顿本人之手,只不过仅仅用朋友的名义出版而已!当争论日趋激烈时,莱布尼兹犯了向皇家学会起诉来 解决这一争端的错误。牛顿作为其主席,指定了一个清一色的由牛顿的朋友组成的“公正的”委员会来审查此案。更有甚者后来牛顿自己写了一个委员会报告,并让 皇家学会将其出版,正式地谴责莱布尼兹剽窃。牛顿还不满意,他又在皇家学会自己的杂志上写了一篇匿名的、关于该报告的回顾。”
  1684 年莱布尼兹发表了他的微积分的论文。3年后,牛顿在1687年出版的《原理》书的初版中对莱布尼兹的贡献表示认同,但是却说:“和我的几乎没甚麼不同,只 不过表达的用字和符号不一样。”这几句话,由于后来与莱布尼兹的矛盾,在第二版(1713年)时也被删掉了。牛顿的流数理论到莱布尼兹发表论文二十年后, 即1704年作为他的著作《光学》的附录中正式发表,附录的序言中,牛顿提到他1676年给莱布尼兹的信,并补充说︰“若干年前我曾出借过一份包含这些定 理(微积分)的原稿,之後就见到一些从那篇当中抄出来的东西,所以我现在公开发表这份原稿。”这话的意思就暗指他的手稿曾经被莱布尼兹看到过,而莱布尼兹 的论文就是从他的手稿中抄来的。
  1711 年3月4日,伦敦皇家学会的秘书斯洛( Hans Sloane)收到莱布尼兹寄来的一封信,信中抱怨其成员开尔(John Keill)指责莱布尼兹把牛顿的微积分改变了少量的符号,伪装为自己的原创发表,并且声明这不是事实,要求学会给以公正的裁决。这正是霍金所说莱布尼兹 的错误,这一状告到了牛顿手上,恰好给了当时作为皇家学会主席的牛顿以售其奸的机会。
  后 来由于牛顿的导演和亲自出马、匿名运作,形成势不两立的两派。以英国为一派包括英国著名数学家泰勒和麦克劳林都认为莱布尼兹是抄袭者。另一派是欧洲大陆的 数学家,包括著名数学家约翰•伯努利等为一派认为牛顿是抄袭者。争论双方停止学了术交流,不仅影响了数学的正常发展,也波及整个自然科学领域,以致发展到 英德两国之间的政治摩擦。自尊心很强的英国民族抱住牛顿的概念和记号不放,拒绝使用更为合理的莱布尼兹的微积分符号和技巧,致使整个18世纪英国在数学发 展上大大落后于欧洲大陆,这场由牛顿导演捍卫牛顿的战斗,使英国人吃了大亏。莱布尼兹生命中的最后7年,是在别人带给他和牛顿关于微积分发明权的争论中痛 苦地度过的。据报道,莱布尼兹死后牛顿为能使莱布尼兹心碎而幸灾乐祸(Following Leibniz's death, Newton reported that he had taken great satisfaction in "breaking Leibniz's heart.”),这,也许更能够看出牛顿的小人心理。
  牛顿在以上所列举的三桩公案中道德低下的表现并不是偶然的。牛顿是一个遗腹子,出生不久,母亲改嫁,由外祖母抚养,从小没爹也没娘,使他心理受到严重扭曲,孤寂好斗。
  从1669年27岁时出任剑桥大学卢卡斯教授起,牛顿就沉湎于炼金术和神学。在牛顿遗留下的手稿中,有关炼金术的内容约有65万字之多,而神学内容的有 150万字之多。即使是在他写作《原理》和《光学》的时候,他的主要精力仍然集中在炼金术和神学上。牛顿的晚年则迷恋于多赚钱上。有人推荐他去担任伦敦的 一所贵族的上流学校的校长,他回信说“每年不过是200英镑,还得每天关在伦敦不出去”为理由回绝了。1696年他离开剑桥出任造币厂督办,1699年出 任造币厂厂长,他如愿以偿,从此他在科学上便无所作为了。
  1692 年,50岁的牛顿表现出心理疾病的严重的迫害狂症状,他那时写的信件表现明显的精神错乱。例如,1693年9月16日,牛顿给著名的哲学家洛克写信说:“ 先生:我认为你竭力用女人和别的手段来纠缠我,我的感情大受影响,以致当有人告诉我你有病,将不能活时,我回答说,最好你死掉。……” 有人认为,他的精神分裂症状和他迷恋炼金术,每天和水银打交道而中毒有关。
  牛顿遗留下许多手稿和文件在1888年辗转到了剑桥大学图书馆,其中的很大一部分于1936年拍卖,著名的经济学家凯恩斯读过其中的一部分,所以对牛顿的思想发展有较深入的了解,1942年,在人们纪念牛顿300周年诞辰的会上报告了他的结论:
  “在18世纪以后,牛顿开始被认为是现代第一个和最伟大的科学家,一个唯理主义者,他教导我们沿着冷静的没有色彩的理性思路去思考。
  “ 我并不这样看待他。我认为任何一个仔细阅读过当他最后于1696年离开剑桥时收拾起来并且虽然部分散失而仍流传给我们的那盒论文的内容的人,都会发现他不 是那样的。牛顿不是理性时代的第一人。他是魔术师中的最后一个,巴比伦和苏美尔人中的最后一个,他是和那些不到一万年前开始创造我们的智力遗产的人们用同 样的眼睛观察这个可见智力世界的最后一个伟大人物。是被贤人们顶礼膜拜的最后一个神童……
  “用通俗的现代语言来说,牛顿是常见的深度精神病患者,……。继承他卢卡斯讲座教授职位的惠斯顿说,‘我所知道的最害怕、最小心、最多疑的性情’……。”
牛顿的三大衡定
  物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒。
亚历山大·蒲柏说到:
  Nature and Nature's laws lay hid in night;
  God said,"let Newton be!" and all was light.
  Soon,everything returned back to the dark as AIl
  be there…
  自然和自然的法则在黑夜中隐藏;
  上帝说,“让牛顿去吧!”于是一切都被照亮。
百科辞典
  Niudun
  牛顿
    大的英国物理学家、天文学家、数学家。
    生平 1642年12月25日(新历1643年1月4日)生于林肯郡,幼年时代就喜欢制作机械玩具。1661年进剑桥大学三一学院学数学,1665年获文学士学位。1667年他进三一学院当研究生,次年获硕士学位。1669年牛顿受到数学教授巴罗博士的推荐,继承他的教授职位。1689年和1701年,牛顿两次以剑桥大学代表的身份被选入议会。1696年他被聘为造币厂的监督。1703年起担任英国皇家学会会长。1727年3月20日(新历3月31日)逝世于伦敦。
    牛顿在科学上的贡献是非常巨大的。从天文学来说,他的主要成就有两方面,即天文光学的研究和万有引力定律的发现。
    天文光学 1666年,牛顿重复了用三棱镜分解日光为七色光带的实验。他正确地解释说,这是各色光线通过玻璃时折射率不同造成的。但是,他认为各种玻璃的折射本领都是一样的,因此折射望远镜不易制造。为了解决这个难题,牛顿便以铜锡合金磨成一面凹面镜来反射聚光成像,1672年牛顿制成了一种新的反射望远镜,一般称为牛顿望远镜。他亲手制造的望远镜现仍保存在英国皇家学会作为珍贵的展品(见彩图牛顿(1642~1727))。
    万有引力定律的发现 1666年,牛顿在家乡躲避瘟疫的时候,曾思考过引力问题。据牛顿晚年的密友斯多克雷的回忆录记载,牛顿在1726年 4月15日亲口告诉他,牛顿曾因见到树上的苹果落地而引起深思,引力的概念进入他的脑海。他的结论是,物体都互相吸引,地球上所有物质对苹果的吸引力的合力是向着地心的,因此苹果才向着地心落下。进一步,牛顿又把物体相互吸引的问题推广到宇宙间。他又想到月球离地球虽然远到地球半径的60倍,但地球的引力也一定会达到月球。那么,月球何以不坠落呢?这一定和月球绕地球的运动有关。若月球暂时停止运动,无疑它会落向地球引起灾难性的碰撞,应该是月球的绕地运动使这灾难得以避免。天体互相吸引的概念,在牛顿以前就有人想到过,例如,英国物理学家R.胡克等人。他们甚至猜测过,引力是和距离平方成反比的。牛顿的贡献是,令人无可怀疑地证明了地球和其他天体的引力确实是按照这个规律变化的。不过,完成这个证明却需要很长的时间。一个原因是当时所掌握的地球半径数据误差较大,从而使牛顿最初算出的月球绕地球运动的向心加速度和地面上重力加速度之比不符合与距离平方成反比的规律。直到1671年法国天文学家皮卡德测算得较精确的地球半径数据后,才有可能通过计算,证明使苹果落到地面的力量,也就是使月球沿轨道绕地球运行的力量。
    既已理解月球绕地球运行的问题,牛顿不难推想到地球绕太阳的运动也是受控于太阳引力的。其他行星与太阳的距离虽不同于地球,它们绕太阳的运动也必定是受它的引力支配。开普勒在牛顿之前曾经从观测的结果得出行星运动的三定律(见开普勒定律),但行星为什么要按这些规律运动,却未能作出解答。牛顿从数学上解答了这个问题。
    牛顿首先证明若要行星与太阳的联线在相等时间内扫过相等的面积,只需引力的方向是沿着行星与太阳的联线即可,不问引力大小与距离有什么关系。假如行星的轨道为一椭圆,而太阳处于椭圆的一焦点上,那么牛顿的数学推理能够证明引力的强弱必须同太阳和行星的距离的平方成反比。在绕日运行各行星的物质同样受到太阳引力影响的假设下,数学方法也足以证明开普勒的第三定律,即任何两颗行星周期的平方同它们轨道长轴的立方成正比。通过进一步的研究,牛顿发现了天体力学中的许多奥秘。他认识到不但大天体象太阳、地球、月球按平方反比律互相吸引,而且宇宙间的每个质点
英文解释
  1. n.:  Newton,  Newton,Sir Isaac,  Sir Isaac Newton
近义词
牛顿县
相关词
物理定律力学百科辞典惯性系运动科学经典力学
量子论相对论爱因斯坦英国剑桥思想家柏拉图动漫
天文学定理数学地轴更多结果...
包含词
S·牛顿牛顿县牛顿龙牛顿的