|
|
一個完整的液壓係統由五個部分組成,即動力元件、執行元件、控製元件、輔助元件和液壓油。動力元件的作用是將原動機的機械能轉換成液體的壓力能,指液壓係統中的油泵,它嚮整個液壓係統提供動力。液壓泵的結構形式一般有齒輪泵、葉片泵和柱塞泵。執行元件(如液壓缸和液壓馬達)的作用是將液體的壓力能轉換為機械能,驅動負載作直綫往復運動或回轉運動。 控製元件(即各種液壓閥)在液壓係統中控製和調節液體的壓力、流量和方向。根據控製功能的不同,液壓閥可分為壓力控製閥、流量控製閥和方向控製閥。壓力控製閥又分為溢流閥(安全閥)、減壓閥、順序閥、壓力繼電器等;流量控製閥包括節流閥、調整閥、分流集流閥等;方向控製閥包括單嚮閥、液控單嚮閥、梭閥、換嚮閥等。根據控製方式不同,液壓閥可分為開關式控製閥、定值控製閥和比例控製閥。 輔助元件包括油箱、濾油器、油管及管接頭、密封圈、壓力表、油位油溫計等。 液壓油是液壓係統中傳遞能量的工作介質,有各種礦物油、乳化液和合成型液壓油等幾大類。
液壓元件:
液壓元件中可分為動力元件和控製元件以及執行元件三大類。儘管都是液壓元件,它們的自身功能和安裝裝使用的技術要求也不盡相同,現分別介紹如下:
一、什麽是動力元件?
動力元件指的是各種液壓泵。
1、齒輪油泵和串聯泵(包括外嚙合與內嚙合)兩種結構型式。
2、葉片油泵(包括單級泵、變量泵、雙級泵、雙聯泵)。
3、柱塞油泵,又分為軸嚮柱塞油泵和徑嚮柱塞油泵,軸嚮柱塞泵有定量泵、變量泵、(變
量泵又分為手動變量與壓力補償變量、伺服變量等多種)從結構上又分為端面配油和閥式配油油兩種配油方式,而徑嚮柱塞泵的配油型式,基本上為閥式配油。
液壓元件分類
動力元件:齒輪泵、葉片泵、柱塞泵、蠃桿泵;
執行元件:液壓缸、活塞液壓缸、柱塞液壓缸、擺動液壓缸、組合液壓缸;
液壓馬達:齒輪式液壓馬達、葉片液壓馬達、柱塞液壓馬達;
控製元件:方向控製閥、單嚮閥、換嚮閥;
壓力控製閥:溢流閥、減壓閥、順序閥、壓力繼電器等;
流量控製閥:節流閥、調速閥、分流閥;
輔助元件:蓄能器、過濾器、冷卻器、加熱器、油管、管接頭、油箱、壓力計、流量計、密封裝置等;
液壓係統的組成
動力元件(油泵)、執行元件(油缸或液壓馬達)、控製元件(各種閥)、輔助元件和工作介質等五部分組成。
1、動力元件(油泵) 它的作用是把液體利用原動機的機械能轉換成液壓力能;是液壓傳動中的動力部分。
2、執行元件(油缸、液壓馬達) 它是將液體的液壓能轉換成機械能。其中,油缸做直綫運動,馬達做旋轉運動。
3、控製元件 包括壓力閥、流量閥和方向閥等。它們的作用是根據需要無級調節液動機的速度,並對液壓係統中工作液體的壓力、流量和流嚮進行調節控製。
4、輔助元件 除上述三部分以外的其它元件,包括壓力表、濾油器、蓄能裝置、冷卻器、管件{主要包括: 各種管接頭(擴口式、焊接式、卡套式,sae法蘭)、高壓球閥、快換接頭、軟管總成、測壓接頭、管夾等}及油箱等,它們同樣十分重要。
5、工作介質 工作介質是指各類液壓傳動中的液壓油或乳化液,它經過油泵和液動機實現能量轉換。
液壓閥
是一種用壓力油操作的自動化元件,它受配壓閥壓力油的控製,通常與電磁配壓閥組合使用,可用於遠距離控製水電站油、氣、水管路係統的通斷。
用於降低並穩定係統中某一支路的油液壓力,常用於夾緊、控製、潤滑等油路。有直動型與先導型之分,多用先導型。
液壓管接頭的分類
液壓軟管、高壓球閥、意圖奇的快速接頭、卡套式管接頭、焊接式管接頭、高壓軟管。
液壓管接頭和普通管接頭的差別
最大的最顯著的區別的就是液壓的壓力是大的驚人的,液壓油管突然爆裂油的衝擊力是很大的。
我這樣說,肯定不能用普通的替換專用的接頭,因為液壓的都是可以承受很大壓力的,普通的最多0.5個氣壓就已經快不行了,現在我們的液壓管接頭技術比起國外來差距太大,液壓英才網提醒各位液壓屆的朋友要多多交流發展中國自己的液壓管接頭技術。 |
|
它是由兩個大小不同的液缸組成的,在液缸裏充滿水或油。充水的叫“水壓機”;充油的稱“油壓機”。兩個液缸裏各有一個可以滑動的活塞,如果在小活塞上加一定值的壓力,根據帕斯卡定律,小活塞將這一壓力通過液體的壓強傳遞給大活塞,將大活塞頂上去。設小活塞的橫截面積是S1,加在小活塞上的嚮下的壓力是F1。於是,小活塞對液體的壓強為P=F1/SI,能夠大小不變地被液體嚮各個方向傳遞”。大活塞所受到的壓強必然也等於P。若大活塞的橫截面積是S2,壓強P在大活塞上所産生的嚮上的壓力F2=PxS2,截面積是小活塞橫截面積的倍數。從上式知,在小活塞上加一較小的力,則在大活塞上會得到很大的力,為此用液壓機來壓製膠合板、榨油、提取重物、鍛壓鋼材等。 |
|
液壓傳動和氣壓傳動稱為流體傳動,是根據17世紀帕斯卡提出的液體靜壓力傳動原理而發展起來的一門新興技術,1795年英國約瑟夫•布拉曼(Joseph Braman,1749-1814),在倫敦用水作為工作介質,以水壓機的形式將其應用於工業上,誕生了世界上第一臺水壓機。1905年將工作介質水改為油,又進一步得到改善。
第一次世界大戰(1914-1918)後液壓傳動廣泛應用,特別是1920年以後,發展更為迅速。液壓元件大約在 19 世紀末 20 世紀初的20年間,纔開始進入正規的工業生産階段。1925 年維剋斯(F.Vikers)發明了壓力平衡式葉片泵,為近代液壓元件工業或液壓傳動的逐步建立奠定了基礎。20 世紀初康斯坦丁•尼斯剋(G•Constantimsco)對能量波動傳遞所進行的理論及實際研究;1910年對液力傳動(液力聯軸節、液力變矩器等)方面的貢獻,使這兩方面領域得到了發展。
第二次世界大戰(1941-1945)期間,在美國機床中有30%應用了液壓傳動。應該指出,日本液壓傳動的發展較歐美等國傢晚了近 20 多年。在 1955 年前後 , 日本迅速發展液壓傳動,1956 年成立了“液壓工業會”。近20~30 年間,日本液壓傳動發展之快,居世界領先地位。
液壓傳動有許多突出的優點,因此它的應用非常廣泛,如一般工業用的塑料加工機械、壓力機械、機床等;行走機械中的工程機械、建築機械、農業機械、汽車等;鋼鐵工業用的冶金機械、提升裝置、軋輥調整裝置等;土木水利工程用的防洪閘門及堤壩裝置、河床升降裝置、橋梁操縱機構等;發電廠渦輪機調速裝置、核發電廠等等;船舶用的甲板起重機械(絞車)、船頭門、艙壁閥、船尾推進器等;特殊技術用的巨型天綫控製裝置、測量浮標、升降旋轉舞臺等;軍事工業用的火炮操縱裝置、船舶減搖裝置、飛行器仿真、飛機起落架的收放裝置和方向舵控製裝置等。 |
|
液壓的優點
與機械傳動、電氣傳動相比,液壓傳動具有以下優點:
1、液壓傳動的各種元件,可以根據需要方便、靈活地來佈置。
2、重量輕、體積小、運動慣性小、反應速度快。
3、操縱控製方便,可實現大範圍的無級調速(調速範圍達2000:1)。
4、可自動實現過載保護。
5、一般采用礦物油作為工作介質,相對運動面可自行潤滑,使用壽命長;
6、很容易實現直綫運動/
7、很容易實現機器的自動化,當采用電液聯合控製後,不僅可實現更高程度的自動控製過程,而且可以實現遙控。
液壓的缺點
1、由於流體流動的阻力和泄露較大,所以效率較低。如果處理不當,泄露不僅污染場地,而且還可能引起火災和爆炸事故。
2、由於工作性能易受到溫度變化的影響,因此不宜在很高或很低的溫度條件下工作。
3、液壓元件的製造精度要求較高,因而價格較貴。
4、由於液體介質的泄露及可壓縮性影響,不能得到嚴格的傳動比。
5、液壓傳動出故障時不易找出原因;使用和維修要求有較高的技術水平。 |
|
一個完整的液壓係統由五個部分組成,即動力元件、執行元件、控製元件、輔助元件和液壓油。
動力元件的作用是將原動機的機械能轉換成液體的壓力能,指液壓係統中的油泵,它嚮整個液壓係統提供動力。液壓泵的結構形式一般有齒輪泵、葉片泵和柱塞泵,它們的性能比較如1-1所示
執行元件(如液壓缸和液壓馬達)的作用是將液體的壓力能轉換為機械能,驅動負載作直綫往復運動或回轉運動。
控製元件(即各種液壓閥)在液壓係統中控製和調節液體的壓力、流量和方向。根據控製功能的不同,液壓閥可分為壓力控製閥、流量控製閥和方向控製閥。壓力 控製閥又分為益流閥(安全閥)、減壓閥、順序閥、壓力繼電器等;流量控製閥包括節流閥、調整閥、分流集流閥等;方向控製閥包括單嚮閥、液控單嚮閥、梭閥、換嚮閥等。根據控製方式不同,液壓閥可分為開關式控製閥、定值控製閥和比例控製閥。
輔助元件包括油箱、濾油器、油管及管接頭、密封圈、壓力表、油位油溫計等。
液壓油是液壓係統中傳遞能量的工作介質,有各種礦物油、乳化液和合成型液壓油等幾大類。 |
|
1、發熱 由於傳力介質(液壓油)在流動過程中存在各部位流速的不同,導致液體內部存在一定的內摩擦,同時液體和管路內壁之間也存在摩擦,這些都是導致液壓油溫度升高的原因。溫度升高將導致內外泄漏增大,降低其機械效率。同時由於較高的溫度,液壓油會發生膨脹,導致壓縮性增大,使控製動作無法很好的傳遞。解决辦法:發熱是液壓係統的固有特徵,無法根除衹能盡量減輕。使用質量好的液壓油、液壓管路的佈置中應盡量避免彎頭的出現、使用高質量的管路以及管接頭、液壓閥等。
2、振動 液壓係統的振動也是其痼疾之一。由於液壓油在管路中的高速流動而産生的衝擊以及控製閥打開關閉過程中産生的衝擊都是係統發生振動的原因。強的振動會導致係統控製動作發生錯誤,也會使係統中一些較為精密的儀器發生錯誤,導致係統故障。解决辦法:液壓管路應盡量固定,避免出現急彎。避免頻繁改變液流方向,無法避免時應做好減振措施。整個液壓係統應有良好的減振措施,同時還要避免外來振源對係統的影響。
3、泄漏 液壓係統的泄漏分為內泄漏和外泄漏。內泄漏指泄漏過程發生在係統內部,例如液壓缸活塞兩邊的泄漏、控製閥閥芯與閥體之間的泄漏等。內泄漏雖然不會産生液壓油的損失,但是由於發生泄漏,既定的控製動作可能會受到影響,直至引起係統故障。外泄漏是指發生在係統和外部環境之間的泄漏。液壓油直接泄漏到環境中,除了會影響係統的工作環境外,還會導致係統壓力不夠引發故障。泄漏到環境中的液壓油還有發生火災的危險。解决辦法:采用質量較好的密封件,提高設備的加工精度。
另:對於液壓係統這三大頑疾,有人進行了總結:“發燒、拉稀帶得瑟”(這位總結者是東北人)。液壓係統用於升降機,挖掘機,泵站,強夯機,起重機,等等大型工業,建築,工廠,企業,還有升降機,升降平臺,登車橋等等行業。 |
|
一、根據液壓係統圖查找液壓故障在液壓係統圖分析排除故障時,主要方法是“抓兩頭”——即抓動力源(油泵)和執行元件(缸、電動機),然後是“連中間”,即從動力源到執行元件之間經過的管路和控製元件。“抓兩頭”時,要分析故障是否就出在油泵、缸和電動機本身。“連中間”時除了要註意分析故障是否出在所連綫路上液壓元件外,還要特別註意弄清楚係統從一個工作狀態轉移到另一個工作狀態時是采用哪種控製方式,控製信號是否有誤,要針對實物,逐一檢查,要註意各個主油路之間及主油路與控製油路之間有無接錯而産生相互干涉現象,如有相互干涉現象,要分析是何等使用調節錯誤等。
二、利用因果圖查找液壓故障
利用因果圖(又稱魚刺圖)分析方法,對液壓設備出現的故障進行分析,既能較快地找出故障主次原因,又能積纍排除故障的經驗。
因果圖分析法,可以用將維護管理與查找故障密切結合起來,因而被廣泛采用。
三、應用鐵譜技術對液壓係統的故障進行診斷和狀態監控
鐵譜技術是以機械摩擦副的磨損為基本出發點,藉助於鐵譜儀把液壓油中的磨損顆粒和其他污染顆粒分離出來,並製成鐵譜片,然後置於鐵譜顯微鏡或掃描電子顯微鏡下進行觀察,或按尺寸大小依次沉積在玻璃管內,應用光學方法進行定量檢測。通過以上分析,可以準確地獲得係統內有關磨損方面的重要信息。據此進一步研究磨損現象,監測磨損狀態,診斷故障前兆,最後作出係統失效預報。
鐵譜技術能有效地應用於工程機械液壓係統油液污染程度的檢測,監控,磨損過程的分析和故障診斷,並且具有直觀、準確、信息多等優點。因此,他已成為對機械工程液壓係統故障進行診斷分析的有力工具。
四、利用故障現象與故障原因相關分析表查找液壓故障
根據工作實踐,總結出故障現象與故障原因相關關係表(或由廠傢提供),可以用於一般液壓故障的查找和處理。
五、利用設備的自診斷功能查找液壓故障
隨着電子技術的不斷發展,目前,許多大中型工程機械,采用了電子計算機控製、通過接口電路及傳感技術,對其液壓係統進行自診斷,並顯示在熒光屏上,使用、維修者可根據顯示故障的內容進行故障排除。 |
|
1開箱:油缸內封有氣化性防銹劑,所以,在裝配前不得拆下入口的塞子。如果拆下塞子,必須立即安裝在機體上,而且在油缸內放滿油
2防銹:油缸安裝在機體上以後,如果活塞在伸出的情況下放置時,必須在活塞桿的露出部分塗敷油脂。
3速度:一般規格的油缸,當動作速度超過2m/s時,其使用壽命將會受到影響。以0.3m/s作為衝程末端的場合,為了保護機構和安全起見,建議內部安裝緩衝機構。另外,使油缸停止時,為了保護油缸機構和安全起見,綫路上也必須考慮,以防止發生很大的衝擊。為了增加油缸的回油量,綫路設計時應該特別註意。在0.5m/min以下低速運轉時,將會影響到動作性(特別是振動),所以,低速運轉時,應該進行洽談。
4運轉:運轉初期,必須完全排清油缸內的空氣。殘留空氣的場合,采取低速充分運轉,排除空氣。如果油缸內殘留空氣受急劇夾壓時,那麽,由於液壓油的作用,有可能使密封圈燒損。另外,動作中如果油缸內部産生負壓,那麽,將有可能由於氣蝕作用而發生異常。 |
|
液壓馬達習慣上是指輸出旋轉運動的,將液壓泵提供的液壓能轉變為機械能的能量轉換裝置。
液壓馬達的特點及分類
從能量轉換的觀點來看,液壓泵與液壓馬達是可逆工作的液壓元件,嚮任何一種液壓泵輸入工作液體,都可使其變成液壓馬達工況;反之,當液壓馬達的主軸由外力矩驅動旋轉時,也可變為液壓泵工況。因為它們具有同樣的基本結構要素--密閉而又可以周期變化的容積和相應的配油機構。
但是,由於液壓馬達和液壓泵的工作條件不同,對它們的性能要求也不一樣,所以同類型的液壓馬達和液壓泵之間,仍存在許多差別。首先液壓馬達應能夠正、反轉,因而要求其內部結構對稱;液壓馬達的轉速範圍需要足夠大,特別對它的最低穩定轉速有一定的要求。因此,它通常都采用滾動軸承或靜壓滑動軸承;其次液壓馬達由於在輸入壓力油條件下工作,因而不必具備自吸能力,但需要一定的初始密封性,才能提供必要的起動轉矩。由於存在着這些差別,使得液壓馬達和液壓泵在結構上比較相似,但不能可逆工作。
液壓馬達按其結梅類型來分可以分為齒輪式、葉片式、柱塞式和其它型式。按液壓馬達的額定轉速分為高速和低速兩大類。額定轉速高於500r/min的屬於高速液壓馬達,額定轉速低於500r/min的屬於低速液壓馬達。高速液壓馬達的基本型式有齒輪式、蠃桿式、葉片式 和軸嚮柱塞式等。它們的主要特點是轉速較高、轉動慣量小,便於啓動和製動,調節(調速及換嚮)靈敏度高。通常高速液壓馬達輸出轉矩不大所以又稱為高速小轉矩液壓馬達。低速液壓馬達的基本型式是徑嚮柱塞式,此外在軸嚮柱塞式、葉片式和齒輪式中也有低速的結構型式,低速液壓馬達的主要特點是排量大、體積大轉速低(有時可達每分鐘幾轉甚至零點幾轉),因此可直接與工作機構連接,不需要減速裝置,使傳動機構大為簡化,通常低速液壓馬達輸出轉矩較大,所以又稱為低速大轉矩液壓馬達。
液壓馬達的工作原理
1、葉片式液壓馬達
由於壓力油作用,受力不平衡使轉子産生轉矩。葉片式液壓馬達的輸出轉矩與液壓馬達的排量和液壓馬達進出油口之間的壓力差有關,其轉速由輸入液壓馬達的流量大小來决定。由於液壓馬達一般都要求能正反轉,所以葉片式液壓馬達的葉片要徑嚮放置。為了使葉片根部始終通有壓力油,在回、壓油腔通人葉片根部的通路上應設置單嚮閥,為了確保葉片式液壓馬達在壓力油通人後能正常啓動,必須使葉片頂部和定子內表面緊密接觸,以保證良好的密封,因此在葉片根部應設置預緊彈簧。 葉片式液壓馬達體積小,轉動慣量小,動作靈敏,可適用於換嚮頻率較高的場合,但泄漏量較大,低速工作時不穩定。因此葉片式液壓馬達一般用於轉速高、轉矩小和動作要求靈敏的場合。
2、徑嚮柱塞式液壓馬達
徑嚮柱塞式液壓馬達工作原理,當壓力油經固定的配油軸4的窗口進入缸體內柱塞的底部時,柱塞嚮外伸出,緊緊頂住定子的內壁,由於定子與缸體存在一偏心距。在柱塞與定子接觸處,定子對柱塞的反作用力為 。力可分解為 和 兩個分力。當作用在柱塞底部的油液壓力為p,柱塞直徑為d,力和之間的夾角為 X時,力對缸體産生一轉矩,使缸體旋轉。缸體再通過端面連接的傳動軸嚮外輸出轉矩和轉速。
以上分析的一個柱塞産生轉矩的情況,由於在壓油區作用有好幾個柱塞,在這些柱塞上所産生的轉矩都使缸體旋轉,並輸出轉矩。徑嚮柱塞液壓馬達多用於低速大轉矩的情況下。
3軸嚮柱塞馬達
軸嚮柱塞泵除閥式配流外,其它形式原則上都可以作為液壓馬達用,即軸嚮柱塞泵和軸嚮柱塞馬達是可逆的。軸嚮柱塞馬達的工作原理為,配油盤和斜盤固定不動,馬達軸與缸體相連接一起旋轉。當壓力油經配油盤的窗口進入缸體的柱塞孔時,柱塞在壓力油作用下外伸,緊貼斜盤斜盤對柱塞産生一個法嚮反力p,此力可分解為軸嚮分力及和垂直分力Q。Q與柱塞上液壓力相平衡,而Q則使柱塞對缸體中心産生一個轉矩,帶動馬達軸逆時針方向旋轉。軸嚮柱塞馬達産生的瞬時總轉矩是脈動的。若改變馬達壓力油輸入方向,則馬達軸按順時針方向旋轉。斜盤傾角a的改變、即排量的變化,不僅影響馬達的轉矩,而且影響它的轉速和轉嚮。斜盤傾角越大,産生轉矩越大,轉速越低。
4、齒輪液壓馬達
齒輪馬達在結構上為了適應正反轉要求,進出油口相等、具有對稱性、有單獨外泄油口將軸承部分的泄漏油引出殼體外;為了減少啓動摩擦力矩,采用滾動軸承;為了減少轉矩脈動齒輪液壓馬達的齒數比泵的齒數要多。
齒輪液壓馬達由幹密封性差,容租效率較低,輸入油壓力不能過高,不能産生較大轉矩。並且瞬間轉速和轉矩隨着嚙合點的位置變化而變化,因此齒輪液壓馬達僅適合於高速小轉矩的場合。一般用幹工程機械、農業機械以及對轉矩均勻性要求不高的機械設備上。 |
|
1.工作壓力與額定壓力
工作壓力:輸入馬達油液的實際壓力,其大小决定於馬達的負載。
馬達進口壓力與出口壓力的差值稱為馬達的壓差。
額定壓力:按試驗標準規定,使馬達連續正常工作的最高壓力。
2.排量和流量
排量:VM (m/rad)
流量
不計泄漏時的流量稱理論流量qMt,考慮泄漏流量為實際流量qM。
3.容積效率和轉速
容積效率ηMv:理論輸入流量與實際輸入流量的比值,
4.轉矩和機械效率
在不計馬達的損失情況下,其輸出功率等於輸入功率.
實際轉矩T:由於馬達實際存在機械損失而産生損失扭矩ΔT,使得比理論扭矩Tt小,即馬達的機械效率ηMm:等於馬達的實際輸出扭矩與理論輸出扭矩的比.
5.功率和總效率
馬達實際輸入功率為pqM,實際輸出功率為Tω.
馬達總效率 ηM:實際輸出功率與實際輸入功率的比值. |
|
在液壓係統及其係統中,密封裝置用來防止工作介質的泄漏及外界灰塵和異物的侵入。其中起密封作用的元件,即密封件。外漏會造成工作介質的浪費,污染機器和環境,甚至引起機械操作失靈及設備人身事故。內漏會引起液壓係統容積效率急劇下降,達不到所需要的工作壓力,甚至不能進行工作。侵入係統中的微小灰塵顆粒,會引起或加劇液壓元件摩擦副的磨損,進一步導致泄漏。
因此,密封件和密封裝置是液壓設備的一個重要組成部分。它的工作的可靠性和使用壽命,是衡量液壓係統好壞的一個重要指標。除間隙密封外,都是利用密封件,使相鄰兩個偶合表面間的間隙控製在需要密封的液體能通過的最小間隙以下。在接觸式密封中,分為自封式壓緊型密封和自封式自緊型密封(即唇形密封)兩種。 |
|
由於液壓係統的振動和噪聲本身不可避免,而且近幾年,隨着液壓技術嚮高速、高壓和大功率方向的發展,液壓係統的噪聲也日趨嚴重,並且成為妨礙液壓技術進一步發展的因素,聲音超過70dB便成為噪聲,使人聽起來極不舒服,甚至使人煩燥不安,噪聲作為污染已經日益受到人們的重視。因此研究和分析液壓噪聲和振動的機理,從而減少與降低振動和噪聲,並改善液壓係統的性能,有着積極而深遠的意義。 液壓係統噪聲源
在液壓傳動係統中,各元件或部件産生噪聲和傳遞噪聲程度不同,1列出了液壓元件或部件産生和傳遞噪聲的名次。 1 液壓元(部)件産生和傳遞噪聲名次表元件與部件 名稱液壓泵溢流閥壓力閥@節流閥方向閥液壓缸油箱管路産生噪聲的 名次12345556傳遞噪聲的 名次23343212 註:表中@指的是溢流閥之外的壓力控製閥 由於液壓係統的噪聲不衹一種,因此最終表現出來的是其合成值,一般來講,液壓係統的噪聲不外乎機械噪聲和流體噪聲兩種,下面予以分析說明。 産生機械噪聲的原因及控製方法
機械噪聲是由於零件之間發生接觸、撞擊和振動而引起的。
① 回轉體的不平衡
在液壓係統中,電動機、液壓泵和液壓馬達都以高速回轉,如果它們的轉動部件不平衡,就會産生周期性的不平衡力,引起轉軸的彎麯振動,因而産生噪聲,這種振動傳到油箱和管路時,發出很大的聲響,為了控製這種噪聲,應對轉子進行精密的動平衡實驗,並註意盡量避開共振區。
② 電動機噪聲
電動機噪聲主要是指機械噪聲、通風噪聲和電磁噪聲。機械噪聲包括轉子不平衡引起的低頻噪聲,軸承有缺陷和安裝不合適而引起的高頻噪聲以及電動機支架與電動機之間共振所引起的噪聲。控製的方法是,軸承與電動機殼體和電動機軸配合要適當,過盈量不可過大或過小,電動機兩端蓋上的孔應同軸;軸承潤滑要良好。
③ 聯軸器引起噪聲
聯軸器是液壓泵與電動機之間的連接機構,如果電動機和液壓泵不同軸以致聯軸器偏斜,則將産生振動與噪聲。因此在安裝時,兩者應保持在最小範圍內。
産生流體噪聲的原因及控製方法
在液壓係統中,流體噪聲占相當大的比例。這種噪聲是由於油液的流速、壓力的突然變化以及氣穴等原因引起的。
① 液壓泵的流體噪聲
液壓泵的流體噪聲主要是由泵的壓力、流量的周期性變化以及氣穴現象引起的。在液壓泵的吸油和壓油循環中,産生周期性的壓力和流量變化,形成壓力脈動,從而引起液壓振動,並經出口嚮整個係統傳播。同時液壓回路的管道和閥類將液壓泵的壓力反射,在回路中産生波動,使泵産生共振,發出噪聲;另一方面,液壓係統中(指開式回路)溶解了大約5%的空氣。當係統中的壓力因某種原因而低於空氣分離壓時,其中溶解於油中的氣體就迅速地大量分離出來,形成氣泡,這些氣泡遇到高壓便被壓破,産生較強的液壓衝擊。對於前者的控製辦法,設計時齒輪模數盡量取小,齒數盡量取多,缺載槽的形狀和尺寸要合理,柱塞泵的柱塞個數應為奇數,最好為7~9個,並在進、排油配流盤上對稱開上三角槽,以防柱塞泵的睏油。為防止空氣混入, 降低液壓係統噪聲的措施
為減少噪聲,必須對噪聲源進行實際調查,測量分析液壓係統的聲壓級,進行頻率分析,從而掌握噪聲源的大小及頻率特性,采取相應辦法,具體列舉如下:
① 使用低噪聲電機;並使用彈性聯軸器,以減少該環節引起的振動和噪聲;
② 在電動機,液壓泵和液壓閥的安裝面上應設置防振膠墊;
③ 盡量用液壓集成塊代替管道,以減少振動;
④ 用蓄能器和橡膠軟管減少由壓力脈動引起的振動,蓄能器能吸收10 Hz以下的噪聲,而高頻噪聲,用液壓軟管則十分有效;
⑤ 用帶有吸聲材料的隔聲罩,將液壓泵罩上也能有效地降低噪聲;
⑥ 係統中應設置放氣裝置。
液壓件的表面要求及加工
缸筒作為油缸、礦用單體支柱、液壓支架、炮管等産品的主要部件,其加工質量的好壞直接影響整個産品的壽命和可靠性。缸筒加工要求高,其內表面粗糙度要求為Ra0.4~0.8µm,對同軸度、耐磨性要求嚴格。缸筒的基本特徵是深孔加工,其加工一直睏擾加工人員。更多技術可咨詢:寧波市精恆凱翔機械有限公司 采用滾壓加工,由於表面層留有表面殘餘壓應力,有助於表面微小裂紋的封閉,阻礙侵蝕作用的擴展。從而提高表面抗腐蝕能力,並能延緩疲勞裂紋的産生或擴大,因而提高缸筒疲勞強度。通過滾壓成型,滾壓表面形成一層冷作硬化層,減少了磨削副接觸表面的彈性和塑性變形,從而提高了缸筒內壁的耐磨性,同時避免了因磨削引起的燒傷。滾壓後,表面粗糙度值的減小,可提高配合性質。
液壓閥作為液壓係統的控製樞紐,運動頻繁,對各組成部分器件的精度要求、密封性、可靠性都要求非常高,國外大部分企業都采用滾壓來提高精度配合,如:日本的小鬆機械、日立機械等,在一些重要部件圖紙中都明確要求滾壓加工。
滾壓原理及加工對比
滾壓加工( Trundle processing)
滾壓加工是一種無切屑加工,在常溫下利用金屬的塑性變形,使工件表面的微觀不平度輾平從而達到改變表層結構、機械特性、形狀和尺寸的目的。因此這種方法可同時達到光整加工及強化兩種目的,是磨削無法做到的。
無論用何種加工方法加工,在零件表面總會留下微細的凸凹不平的刀痕,出現交錯起伏的峰𠔌現象,
滾壓加工原理:它是一種壓力光整加工,是利用金屬在常溫狀態的冷塑性特點,利用滾壓工具對工件表面施加一定的壓力,使工件表層金屬産生塑性流動,填入到原始殘留的低凹波𠔌中,而達到工件表面粗糙值降低。由於被滾壓的表層金屬塑性變形,使表層組織冷硬化和晶粒變細,形成緻密的纖維狀,並形成殘餘應力層,硬度和強度提高,從而改善了工件表面的耐磨性、耐蝕性和配合性。滾壓是一種無切削的塑性加工方法。更多技術可咨詢:寧波市精恆凱翔機械有限公司
無切削加工技術安全、方便,能精確控製精度,幾大優點:
1、提高表面粗糙度,粗糙度基本能達到Ra≤0.08µm左右。
2、修正圓度,橢圓度可≤0.01mm。
3、提高表面硬度,使受力變形消除,硬度提高HV≥4°
4、加工後有殘餘應力層,提高疲勞強度提高30%。
5、提高配合質量,減少磨損,延長零件使用壽命,但零件的加工費用反而降低。
大型油缸鏡面滾壓刀
油缸是工程機械最主要部件,傳統的加工方法是:拉削缸體——精鏜缸體——磨削缸體。采用滾壓方法是:拉削缸體——精鏜缸體——滾壓缸體,工序是3部分,但時間上對比:磨削缸體1米大概在1-2天的時間,滾壓缸體1米大概在10-30分鐘的時間。投入對比:磨床或絎磨機(幾萬——幾百萬),滾壓刀(1仟——幾萬)。滾壓後,孔表面粗糙度由幢滾前Ra3.2~6.3µm減小為Ra0.4~0.8µm,孔的表面硬度提高約30%,缸筒內表面疲勞強度提高25%。油缸使用壽命若衹考慮缸筒影響,提高2~3倍,鏜削滾壓工藝較磨削工藝效率提高3倍左右。以上數據說明,滾壓工藝是高效的,能大大提高缸筒的表面質量。
油缸經過滾壓後,表面沒有鋒利的微小刃口,長時間的運動摩擦也不會損傷密封圈或密封件,這點在液壓行業特別重要。
液壓行業的專業招聘平臺
液壓英才網:是唯一的一傢專為液壓的企(事)業單位提供個性化服務的人力資源網站。液壓英才網在廣大客戶的支持與信賴下,發展迅猛,自2004年創辦,致力於為液壓領域企業和個人搭建一個人才交流的互動平臺。主要針對的行業:液壓元件、液壓係統、液壓傳動、液壓機械、液壓工具等。 |
|
- n.: hydraulic pressure
|
|
- n. pression hydraulique
|
|
參數 | 汽車 | 機械 | 機械設計 | 建築 | 施工 | 百科辭典 | 機械原理 | 電影 | 科學 | 軍事 | 天文百科 | 中醫詞典 | 百科大全 | 製動係統 | 雙液壓回路 | 工業 | 機械工程 | 液壓傳動係統 | 粘性 | 流體 | 粘度換算 | 歷史 | 地理 | 地名 | 古代史 | 更多結果... |
|
|
|