shù xué yìng yòng shù xué : jīn > zhèng qiē
mùlù
zhèng qiē zhèng qiē
  dāng mǒu jiǎo de dǐng diǎn píng miàn zhí jiǎo zuò biāo de yuán diǎn chónghé , ér gāi jiǎo de shǐ biān yòu X zhóu de zhèng xiàng chónghé shí , jiǎo zhōng biān shàng rèn diǎn de zòng zuò biāo chú gāi diǎn de fēi líng héng zuò biāo suǒ de shāng
No. 2
  dìng
   zhèng qiē hán shù shì zhí jiǎo sān jiǎo xíng zhōngduì biān lín biān de zhífàng zài zhí jiǎo zuò biāo zhōng tanθ=y/x
   sān jiǎo hán shù
   sān jiǎo hán shù shì shù xué zhōng shǔ chū děng hán shù zhōng de chāo yuè hán shù de lèi hán shù men de běn zhì shì rèn jiǎo de zhí de de biàn liàng zhī jiān de yìng shètōng cháng de sān jiǎo hán shù shì zài píng miàn zhí jiǎo zuò biāo zhōng dìng de dìng wéi zhěng shí shù lìng zhǒng dìng shì zài zhí jiǎo sān jiǎo xíng zhōngdàn bìng wán quánxiàn dài shù xué men miáo shù chéng qióng shù liè de xiàn wēi fēn fāng chéng de jiějiāng dìng kuò zhǎn dào shù
   yóu sān jiǎo hán shù de zhōu xìng bìng yòu dān zhí hán shù shàng de fǎn hán shù
   sān jiǎo hán shù zài shù zhōng yòu jiào wéi zhòng yào de yìng yòngzài xué zhōngsān jiǎo hán shù shì cháng yòng de gōng
   xiāng guān zhī shí
   zhǒng běn hán shù ( chū děng běn biǎo shì ):
   hán shù míng zhèng xián xián zhèng qiē qiē zhèng
   zhèng xián hán shù sinθ=y/r
   xián hán shù cosθ=x/r
   qiē hán shù cotθ=x/y
   zhèng hán shù secθ=r/x
   hán shù cscθ=r/y
   tóng jiǎo sān jiǎo hán shù jiān de běn guān shì
  · píng fāng guān
  sin^2(α)+cos^2(α)=1
  tan^2(α)+1=sec^2(α)
  cot^2(α)+1=csc^2(α)
  · de guān
  sinα=tanα*cosαcosα=cotα*sinα
  tanα=sinα*secαcotα=cosα*cscα
  secα=tanα*cscαcscα=secα*cotα
  · dàoshǔ guān
  tanα·cotα=1
  sinα·cscα=1
  cosα·secα=1
   sān jiǎo hán shù héng děng biàn xíng gōng shì
  · liǎng jiǎo chā de sān jiǎo hán shù
  cos(α+β)=cosα·cosβ-sinα·sinβ
  cos(α-β)=cosα·cosβ+sinα·sinβ
  sin(α±β)=sinα·cosβ±cosα·sinβ
  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  · bèi jiǎo gōng shì
  sin(2α)=2sinα·cosα
  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  tan(2α)=2tanα/[1-tan^2(α)]
  · sān bèi jiǎo gōng shì
  sin3α=3sinα-4sin^3(α)
  cos3α=4cos^3(α)-3cosα
  · bàn jiǎo gōng shì
  sin^2(α/2)=(1-cosα)/2
  cos^2(α/2)=(1+cosα)/2
  tan^2(α/2)=(1-cosα)/(1+cosα)
  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
  · jiàng gōng shì
  sin^2(α)=(1-cos(2α))/2
  cos^2(α)=(1+cos(2α))/2
  tan^2(α)=(1-cos(2α))/(1+cos(2α))
  · wàn néng gōng shì
  sinα=2tan(α/2)/[1+tan^2(α/2)]
  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
  tanα=2tan(α/2)/[1-tan^2(α/2)]
  · huà chā gōng shì
  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
  · chā huà gōng shì
  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
  ·
  tana·tanb·tan(a+b)+tana+tanb-tan(a+b)=0
   gāo děng dài shù zhōng sān jiǎo hán shù de zhǐ shù biǎo shì ( yóu tài shù ):
  sinx=[e^(ix)-e^(-ix)]/(2i)
  cosx=[e^(ix)+e^(-ix)]/2
  tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
shù xué shù
dìng
   zhèng qiē hán shù shì zhí jiǎo sān jiǎo xíng zhōngduì biān lín biān de zhífàng zài zhí jiǎo zuò biāo zhōng tanθ=y/x
   yòu biǎo shì wéi tgθ=y/x, dàn bān cháng yòng tanθ=y/x( yóu zhèng qiē yīng wén tangent jiǎn xiě lái)。
sān jiǎo hán shù
  sān jiǎo hán shù shì shù xué zhōng shǔ chū děng hán shù zhōng de chāo yuè hán shù de lèi hán shù men de běn zhì shì rèn jiǎo de zhí de de biàn liàng zhī jiān de yìng shètōng cháng de sān jiǎo hán shù shì zài píng miàn zhí jiǎo zuò biāo zhōng dìng de dìng wéi zhěng shí shù lìng zhǒng dìng shì zài zhí jiǎo sān jiǎo xíng zhōngdàn bìng wán quánxiàn dài shù xué men miáo shù chéng qióng shù liè de xiàn wēi fēn fāng chéng de jiějiāng dìng kuò zhǎn dào shù
   yóu sān jiǎo hán shù de zhōu xìng bìng yòu dān zhí hán shù shàng de fǎn hán shù
   sān jiǎo hán shù zài shù zhōng yòu jiào wéi zhòng yào de yìng yòngzài xué zhōngsān jiǎo hán shù shì cháng yòng de gōng
   zài RT ABC zhōng guǒ ruì jiǎo A què dìng me jiǎo A de duì biān lín biān de suí zhī què dìngzhè jiào zuò jiǎo A de zhèng qiē zuò tanA
   tanA= jiǎo A de duì biān / jiǎo A de lín biān
   sān jiǎo hán shù shì
xiāng guān zhī shí
  liù zhǒng běn hán shù ( chū děng běn biǎo shì ):
   hán shù míng zhèng xián xián zhèng qiē qiē zhèng
   zhèng xián hán shù sinθ=y/r
   xián hán shù cosθ=x/r
   zhèng qiē hán shù tanθ=y/x
   qiē hán shù cotθ=x/y
   zhèng hán shù secθ=r/x
   hán shù cscθ=r/y
   tóng jiǎo sān jiǎo hán shù jiān de běn guān shì
  · píng fāng guān
  sin^2(α)+cos^2(α)=1
  tan^2(α)+1=sec^2(α)
  cot^2(α)+1=csc^2(α)
  · de guān
  sinα=tanα*cosαcosα=cotα*sinα
  tanα=sinα*secαcotα=cosα*cscα
  secα=tanα*cscαcscα=secα*cotα
  · dàoshǔ guān
  tanα·cotα=1
  sinα·cscα=1
  cosα·secα=1
   sān jiǎo hán shù héng děng biàn xíng gōng shì
  · liǎng jiǎo chā de sān jiǎo hán shù
  cos(α+β)=cosα·cosβ-sinα·sinβ
  cos(α-β)=cosα·cosβ+sinα·sinβ
  sin(α±β)=sinα·cosβ±cosα·sinβ
  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  · bèi jiǎo gōng shì
  sin(2α)=2sinα·cosα
  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  tan(2α)=2tanα/[1-tan^2(α)]
  · sān bèi jiǎo gōng shì
  sin3α=3sinα-4sin^3(α)
  cos3α=4cos^3(α)-3cosα
  · bàn jiǎo gōng shì
  sin^2(α/2)=(1-cosα)/2
  cos^2(α/2)=(1+cosα)/2
  tan^2(α/2)=(1-cosα)/(1+cosα)
  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
  · jiàng gōng shì
  sin^2(α)=(1-cos(2α))/2
  cos^2(α)=(1+cos(2α))/2
  tan^2(α)=(1-cos(2α))/(1+cos(2α))
  · wàn néng gōng shì
  sinα=2tan(α/2)/[1+tan^2(α/2)]
  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
  tanα=2tan(α/2)/[1-tan^2(α/2)]
  · huà chā gōng shì
  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
  · chā huà gōng shì
  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
  ·
  tanA·tanB·tan(A+B)+tanA+tanB-tan(A+B)=0
   gāo děng dài shù zhōng sān jiǎo hán shù de zhǐ shù biǎo shì ( yóu tài shù ):
  sinx=[e^(ix)-e^(-ix)]/(2i)
  cosx=[e^(ix)+e^(-ix)]/2
  tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
  
bǎi diǎn
   zhèng qiē
  tangent
     zhèng qiē I qiàng shí ;m mǐn reHc
   sān jiǎo hán shù
  S】 11X
  V=1 IIX= héng 'èr
   )SX
   lìng hào shì tg. de dìng shì zhěng shù zhóu chú diǎn 7r/2+
  n , n= shì 1, shì 2, · zhèng qiē shì jiè de de qiě
   wéi zhōu de zhōu hán shù . zhèng qiē qiē (cot lǎng róng nt) de guān
   shì
  tan 'èr = gōng .
  OotanX
   zhèng qiē de fǎn hán shù chēng wéi fǎn zhèng qiē ( gōng g t).
   zhèng qiē de dǎo shù shì
  (tan quàn, -- shàng .
   zhāo X
   zhèng qiē de dìng fēn shì
   dīng tanxdx In, x +c·
   zhèng qiē yòu shù zhǎn kāi shì
  x」 .2x5.17x7 èr
   xié nx=x shí 'èr shí ~ gòng gòng, + èr gòng +·… lx{  
yīngwénjièshì
  1. n.:  secant,  tangency,  tangent