weishengwu yichuanxue
微生物遗传学
microbial genetics
以病毒、细菌、小型真菌以及单细胞动植物等微生物为研究对象的遗传学分支学科。微生物有个体小、生活周期短、常能在简单的合成培养基上迅速繁殖等特点,并且可以在相同条件下处理大量个体,所以是进行遗传学研究的良好材料。微生物遗传学在20世纪40~50年代的发展,促进了遗传学中一些基本理论的阐明;50~60年代推动了分子遗传学的发展。
简史 30年代中已经开始对酵母菌、脉孢菌和草履虫的遗传学研究,不过那时研究的对象限于能进行有性生殖的微生物,研究的课题大多限于基因的分离、连锁和重组等。开始认识和利用微生物的优越性进行遗传学研究的是美国遗传学家G.W.比德尔和生物化学家E.L.塔特姆。他们原来企图通过果蝇复眼色素遗传的研究来阐明基因的原初功能,虽然取得了一些进展,但并不理想,于是便改用脉孢菌作为研究材料,另行研究基因在氨基酸等的生物合成中所起的作用。这样做的原因是:①果蝇复眼色素的分子结构和生物合成途径比较复杂,要取得大量色素也比较困难;②氨基酸等的分子结构或生物合成都比色素简单;③脉孢菌便于通过大量培养而取得它的代谢产物;④正像在果蝇的复眼色素的研究中必须获得不能合成色素的突变型一样,要研究基因在氨基酸合成中的作用,必须获得不能合成氨基酸的突变型。要做到这一点,所研究的生物必须本身能合成全部氨基酸,脉孢菌正是这样一种生物;⑤脉孢菌的基因分离、连锁、重组等研究已经有一定的基础;⑥在微生物中利用射线诱发基因突变已有报道。
40年代主要通过下列几方面的工作奠定了微生物遗传学的基础:
脉孢菌中营养缺陷型的发现和基因原初功能的研究40年代初比德尔和塔特姆用射线处理脉孢菌得到了多种营养缺陷型,这些突变型只有在培养基中添加了它们所不能合成的物质才能生长。研究营养缺陷型的重要意义是:①为生物合成代谢途径的研究提供了有效的手段;②提出了一个基因一种酶的假设;③利用营养缺陷型探索代谢途径的原理在遗传学各个领域中得到广泛应用;④除研究基因的原初功能外,还被应用于研究基因结构和基因突变,从这些研究所得到的许多原理以后又被应用于人类体细胞的遗传学研究(见体细胞遗传学),从而推动了人类遗传学的发展;⑤应用营养缺陷作为标记,发现了细菌接合。
细菌接合和基因重组的发现 早在30年代就有人提出细菌是否有基因重组的问题,并且试图进行验证,但因所用的检测遗传重组的形态和糖发酵性状不很稳定,并且没有采用排除亲本而选择重组体的方法,所以没有取得可信的结果。1946年美国微生物遗传学家J.莱德伯格和塔特姆在大肠杆菌中以营养缺陷型为选择标记,发现了细菌的基因重组现象。这一发现既说明了生物界遗传规律的普遍性;又开辟了应用大肠杆菌等为材料的遗传学研究的广阔领域。目前大肠杆菌已是遗传学方面研究得最为详尽的生物,通过大肠杆菌和它的噬菌体的遗传学研究又开创了分子遗传学。大肠杆菌基因重组的发现还导致了大肠杆菌的转导、真菌的准性生殖和放线菌的基因重组等现象的发现,并为微生物遗传学理论应用于生产实践开辟了前景。
细菌转化因子的化学鉴定 肺炎双球菌的转化现象在1928年就已发现,可是转化因子的化学本质直到1944年才为美国化学家O.T.埃弗里鉴定为DNA。此后DNA的重要意义才逐渐被认识,分子遗传学的发展才有可能。
细菌抗药性突变的研究 细菌的抗药性来自基因突变还是对环境的适应性变异是个长期争论不休的问题。1943年原来当医生的S.卢里亚和由物理学转向噬菌体遗传学研 |