数理化 > 弗罗贝尼乌斯定理
  弗罗贝尼乌斯定理指出(c1光滑的情况):
  u为rn的开集,f是Ω1(u)的常数阶r阶的子模。则f可积当且仅当对每个p ∈ u茎(stalk)fp由r个恰当微分形式给出。
  几何上来看,它说每个1-形式的r阶可积模和一个余维为r的层相同。这是研究向量场和层理论的基本工具之一。
  这个结论在解析1-形式和和乐情况下也成立,但要把r换成c。它可以推广到高阶的微分形式,在有些条件下,也可以推广到有奇点的情况。
  也有用向量场表达的定理。存在和如下向量场相切的v的子流形的充分条件
  x1, x2, ..., xr,
  可以表达为任意两个场的李括号
  [xi,xj]
  包含在这些场撑成的空间中。因为李括号可在子空间上取,这个条件也是必要的。定理的这两种表述是因为李括号和外微分是相关的。
  上面最后这个表述可以用来表明向量场在流形上的可积性。定理的这个变种表明流形m上的任何光滑向量场x可以积分,得到一个单参数族的曲线。这个可积性是因为定义曲线的方程是一阶常微分方程,所以可积性有picard-lindelöf定理保证。