sheying jihexue
射影几何学
projective geometry
研究图形的射影性质,即它们经过射影变换不变的性质。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊地位,通过它可以把其他一些几何联系起来。
扩大空间和射影空间 在一个欧氏(或仿射)平面上,两条直线一般相交于一点,但有例外,平行线不相交。这种例外,使某些定理显得复杂。为了排除这种例外,在每条直线上添上一个理想点,叫做无穷远点,并假定平行直线相交于无穷远点。添上无穷远点的直线叫做扩大直线,它是闭的,象圆周那样,去掉它上面一点,不会使它分成两截。再假定不平行的直线有不同的无穷远点,这样,平面上一切无穷远点的集合就叫做无穷远(直)线,而添上无穷远线之后的平面就叫做扩大平面。扩大平面也是闭的,去掉它上面一条直线,不会使它分成两块。
同样,三维欧氏(或仿射)空间中一切无穷远点的集合叫做无穷远(平)面。添上无穷远面后的空间叫做扩大空间,它也是闭的。在扩大空间,不但平行直线交于一个无穷远点,而且平行平面交于一条无穷远直线,一条非无穷远直线和一个与它平行的平面交于一个无穷远点。
如果再进一步,把无穷远元素(点、线、面)和非无穷远元素平等看待,不加区别,扩大空间就叫做射影空间。同样,从扩大直线和扩大平面可以得到射影直线和射影平面。在射影空间里,平行的概念消失了:两条共面直线或一个平面和一条直线总相交于一点,两个平面总相交于一条直线;此外,每两点总决定一条直线,每三个不共线点总决定一个平面,等等。
齐次坐标 为了能用代数方法来处理射影(或扩大)空间的几何问题,需要引进齐次坐标(有时还引进射影坐标)。
仍从欧氏(或仿射)平面开始。设在平面上已经建立了以□为原点的直角(或仿射)坐标系,(□,□)为一点□ 的坐标。令□则比值□0:□1:□2完全确定□ 的位置,(□0,□1,□2)就叫做□的齐次(笛氏)坐标。原点的齐次坐标显然可以写成(1,0,0)。设□不是原点□,则□1,□2不同时等于零;再令□1,□2固定,而令□0向0接近,则□点沿一条经过□而斜率为□2:□1的直线□向远方移动。设□表示扩大直线□上的无穷远点,则可以认为,当□0趋于□ 时,□趋于□。因此,可以把(0,□1,□2)作为□的齐次坐标,特殊地,(0,1,0)和(0,0,1)依次是□轴和□ 轴上无穷远点的齐次坐标。这样,每一组不同时为零的三个数□0,□1,□2 都是扩大平面上一点的齐次坐标,而若□ 为不等于零的数,则(□□0,□□1,□□2)和(□0,□1,□2)代表同一点,下面引进记号(□)=(□0,□1,□2),□(□)=(□□0,□□1,□□2)。
设□ (□1,□2不都是0)是欧氏(或仿射)平面上一条直线的方程。在用齐次坐标表示时,它可以写成
□, (1)这也就是扩大直线的齐次方程,这直线上的无穷远点是(0,□2,-□1)。扩大平面上的无穷远直线方程显然可以写成□0=0。这样,每一个齐次线性方程都代表扩大平面上一条直线。由于比值□0:□1:□2完全确定直线,(□)=(□0,□1,□2)就叫做(齐次)线坐标。为了区别两种齐次坐标,上面引进的(□)=(□0,□1,□2)就叫做(齐次)点坐标。方程(1)叫做点(□)和线(□)的关联条件或接合(即(□)在(□)上,或(□)经过(□))条件。
当不区别无穷远元素和非无穷远元素,使扩大平面成为射影平面时,(□)和(□)就依次成为射影平面上的齐次点坐标和线坐标,它们都可以看作射影坐标的特款。
与此类似,可以得到扩大或射影直线上的点坐标(□)=(□0,□1)以及扩大或射影空间的点坐标(□)=(□0,□1,□2,□3)和面坐标 |