数理化 : 哲学史 : 百科书名 : 文学写作 : 经济 > 几何原本
目录
No. 1
  几何原本(几jǐ) : 指古希腊数学家欧几里得的著作《原本》。是世界上第一部公理化的数学著作。全书十三卷,前六卷包括目前中学平面几何的大部分内容,第七至九卷是数论,第十至十三卷讨论不可公度量、立体几何和度量法。被译成世界各国文字,传世不衰。
No. 2
  几何原本(geometry born)
  "elelments" by euclid of alexandria (ca. 325 bc - 265 bc)
简介
  古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,两千多年来一直是学习几何的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
  欧几里德一生著有多部数学著作,《几何原本》是其中最有价值的一部。它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
几何原本的一些内容
  五条公理
  1.等于同量的量彼此相等;
  2.等量加等量,其和相等;
  3.等量减等量,其差相等;
  4.彼此能重合的物体是全等的;
  5.整体大于部分。
  五条公设
  1.过两点能作且只能作一直线;
  2.线段(有限直线)可以无限地延长;
  3.以任一点为圆心,任意长为半径,可作一圆;
  4.凡是直角都相等;
  5.在一平面内,过直线外一点,可作且只可作一直线跟已知直线平行。(最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。)
几何原本的内容
  欧几里得的《几何原本》共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;最后讲述立体几何的内容。
  从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。
  在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。
  关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
  欧几里得《几何原本》的诞生在几何学发展的历史中具有重要意义。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
  中世纪时,欧洲科学比较落后,学生初读《原本》, 学第五命题“等腰三角形底角必相等”时觉得很困难。这一命题被戏谑称为“驴桥”(pons asinorum,英文ses'bridge,意思是“笨蛋的难关”)。第四十七命题就是有名的勾股定理。第二卷第12、13命题相当于余弦定理。第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。
  从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
  少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
  但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
几何原本的传播
  《几何原本》最初是手抄本,以后译成了世界各种文字,它的发行量仅次于《圣经》而位居第二。19世纪初,法国数学家勒让德,把欧几里德的原作,用现代语言写成了几何课本,成为现今通用的几何学教本。中国最早的译本是1607年意大利传教士利玛窦(matteo ricci,1552-1610)和徐光启根据德国人克拉维乌斯校订增补的拉丁文本《欧几里得原本》(15卷)合译的,定名为《几何原本》,几何的中文名称就是由此而得来的。该译本第一次把欧几里德几何学及其严密的逻辑体系和推理方法引入中国,同时确定了许多我们现在耳熟能详的几何学名词,如点、直线、平面、相似、外似等。他们只翻译了前6卷,后9卷由英国人伟烈亚力和中国科学家李善兰在1857年译出。
  《几何原本》对数学发展的影响超过任何别的书,它一方面是现代科学技术的理论之一,另一方面它给予人们一套科学的几何学思想。
  《几何原本》是我国最早第一部自拉丁文译来的数学著作。在翻译时绝无对照的词表可循,许多译名都从无到有,当时创造的。毫无疑问,这是需要精细研究煞费苦心的。这个译本中的许多译名都十分恰当,不但在我国一直沿用至今,并且还影响了日本、朝鲜各国。如点、线、直线、曲线、平行线、角、直角、锐角、钝角、三角形、四边形……这许多名词都是由这个译本首先定下来的。其中只有极少的几个经后人改定,如“等边三角形”,徐光启当时记作“平边三角形”;“比”,当时译为“比例”;而“比例”则译为“有理的比例”等等。
  《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。徐光启对《几何原本》区别于中国传统数学的这种特点,有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
  清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大。
  到清朝末年废科举、兴学堂之后,几何学方成为学校中必修科目之一。到这时才出现了徐光启所预料的“必人人而习之”的情况。
  徐光启在翻译此作时,对它有极高的评价:能精此书者,无一事不可精;好学此书者,无一事不可学。爱因斯坦更是认为:如果欧几里得未激发你少年时代的科学热情,那你肯定不是天才科学家。由此可见它对人类科学思维的影响是何等巨大。
《几何原本》的内容
  《几何原本》(theelements)由希腊数学家欧几里得(euclid,公元前330年~公元前275年)所著,是用公理方法建立演绎数学体系的最早典范。是至今流传最广、影响最大的一部世界数学名著。
  《几何原本》全书共13卷。第1卷,给出了欧几里得几何学的基本概念、定义、公理、公设等;第2卷,面积和变换;第3卷,圆及其有关图形;第4卷,多边形及圆与正多边形的作图;第5、6卷,比例与相似形;第7卷,数论;第8卷,连比例;第9卷,数论;第10卷,不可通约量的理论;第11卷,立体几何;第12卷,利用“穷竭法”证明圆面积的比等于半径平方的比;球体积的比等于半径立方的比,等等;第13卷,正多面体。《几何原本》一书从很少的几个定义、公设、公理出发,推导出大量结果,最重要的是它给出的公理体系标志着演绎数学的成熟,主导了其后数学发展的主要方向,使公理化成为现代数学的根本特征之一。《几何原本》是数学史上的一个伟大的里程碑,问世以来,受到广泛的重视与传播。除《圣经》之外,没有任何一本著作,其使用、研究与印行之广泛能与《几何原本》相比。2000多年来,它一直支配着几何的教学。因此,有人称《几何原本》为数学的《圣经》。 战争使大量人类文化和珍贵书籍化为灰烬。欧几里得的《几何原本》手稿至今也荡然无存。现存《几何原本》的一种版本是公元4世纪末泰恩(theon)的《几何原本》修订本。还有一个版本是18世纪在梵蒂冈图书馆发现的一个10世纪的《几何原本》希腊手抄本,其内容早于泰恩的修订本。
  《几何原本》传人中国,首先应归功于明末科学家徐光启。徐光启(1562~1633),字子先,上海吴淞人。他在加强国防、发展农业、兴修水利、修改历法等方面都有相当的贡献,对引进西方数学和历法更是不遗余力。他认识意大利传教士利玛窦之后,决定一起翻译西方科学著作。利玛窦主张先译天文历法书籍,以求得天子的赏识。但徐光启坚持按逻辑顺序,先译《几何原本》。他们于1606年完成前6卷的翻译,1607年在北京印刷发行。
  徐光启和利玛窦《几何原本》中译本的一个伟大贡献在于确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。“几何”的原文是“geometria”,徐光启和利玛窦在翻译时,取“geo”的音为“几何”,而“几何”二字中文原意又有“衡量大小”的意思。用“几何”译“geometria”,音义兼顾,确是神来之笔。几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。这些译名一直流传到今天,且东渡日本等国,影响深远。
  徐光启要求全部译完《几何原本》,但利玛窦却认为应当适可而止。由于利玛窦的坚持,《几何原本》的后9卷的翻译推迟了200多年,才由清代数学家李善兰和英国人伟烈亚力合作完成。李善兰(1811~1882),字壬叔,号秋纫,浙江海宁人,自幼喜欢数学。1852年到上海后,李善兰与伟烈亚力相约,继续完成徐光启、利玛窦未完成的事业,合作翻译《几何原本》后9卷,并与1856年完成此项工作。至此,欧几里得的这一伟大著作第一次完整地引入中国,对中国近代数学的发展起到了重要的作用。
  徐光启在评论《几何原本》时还说过:“此书为益能令学理者祛其浮气,练其精心;学事者资其定法,发其巧思,故举世无一人不当学。”其大意是:读《几何原本》的好处在于能去掉浮夸之气,练就精思的习惯,会按一定的法则,培养巧妙的思考。所以全世界人人都要学习几何。
简介
  《几何原本》(希腊语:Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。
  古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。在《原本》里,欧几里德系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。
  两千多年来,《几何原本》一直是学习几何的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
  《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一书。即使数学巨著,又是哲学巨著,并且第一次完成了人类对空间的认识。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。
几何原本》的主要内容
  欧几里得的《几何原本》共有十三卷。
  目录
  第一卷 几何基础
  第二卷 几何与代数
  第三卷 圆与角
  第四卷 圆与正多边形
  第五卷 比例
  第六卷 相似
  第七卷 数论(一)
  第八卷 数论(二)
  第九卷 数论(三)
  第十卷 无理量
  第十一卷 立体几何
  第十二卷 立体的测量
  第十三卷 建正多面体
  各卷简介
  第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是 毕达哥拉斯定理的正逆定理;
  第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。
  第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。
  第四卷:讨论圆内接和外切多边形的做法和性质;
  第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一"
  第六卷:讲相似多边形理论,并以此阐述了比例的性质。
  第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。
  第十一卷、十二、十三卷:最后讲述立体几何的内容.
  从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。
几何原本》的意义和影响
  在几何学上的影响和意义
  在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理,从而说明了欧洲是最早发现勾股定理的大洲。
  论证方法上的影响
  关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
  作为教材的影响
  从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
  (牛顿的例子)
  少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
  《原本》的缺憾
  但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
《几何原本》的传播
  《几何原本》最初是手抄本,以后译成了世界各种文字,它的发行量仅次于《圣经》而位居第二。19世纪初,法国数学家勒让德,把欧几里德的原作,用现代语言写成了几何课本,成为现今通用的几何学教本。
  中国最早的译本是1607年意大利传教士利玛窦(Matteo Ricci,1552-1610)和徐光启根据德国人克拉维乌斯校订增补的拉丁文本《欧几里得原本》(15卷)合译的,定名为《几何原本》,几何的中文名称就是由此而得来的。该译本第一次把欧几里德几何学及其严密的逻辑体系和推理方法引入中国,同时确定了许多我们现在耳熟能详的几何学名词,如点、直线、平面、相似、外似等。他们只翻译了前6卷,后9卷由英国人伟烈亚力和中国科学家李善兰在1857年译出。
《几何原本》在中国
  前六卷的翻译工作
  《几何原本》传人中国,首先应归功于明末科学家徐光启。
  徐光启(1562~1633),字子先,上海吴淞人。他在加强国防、发展农业、兴修水利、修改历法等方面都有相当的贡献,对引进西方数学和历法更是不遗余力。他认识意大利传教士利玛窦之后,决定一起翻译西方科学著作。利玛窦主张先译天文历法书籍,以求得天子的赏识。但徐光启坚持按逻辑顺序,先译《几何原本》。
  对徐光启而言,《几何原本》有严整的逻辑体系,其叙述方式和中国传统的《九章算术》完全不同。这种区别于中国传统数学的特点,徐光启有着比较清楚的认识。他还充分认识到几何学的重要意义,他说“窃百年之后,必人人习之”。
  他们于1606年完成前6卷的翻译,1607年在北京印刷发行。
  徐光启翻译中的重要贡献
  徐光启和利玛窦《几何原本》中译本的一个伟大贡献在于确定了研究图形的这一学科中文名称为“几何”,并确定了几何学中一些基本术语的译名。“几何”的原文是“geometria”,徐光启和利玛窦在翻译时,取“geo”的音为“几何”,而“几何”二字中文原意又有“衡量大小”的意思。用“几何”译“geometria”,音义兼顾,确是神来之笔。几何学中最基本的一些术语,如点、线、直线、平行线、角、三角形和四边形等中文译名,都是这个译本定下来的。这些译名一直流传到今天,且东渡日本等国,影响深远。
  后9卷的翻译工作
  就在他们想继续把《几何原本》的后9卷翻译完的时候,发生了一件意想不到的事情,就是徐光启的父亲不幸去世了。徐父去世的准确日子是5月23日。当时徐光启尽管已经入教,但作为一名一直在传统文化熏陶下成长起来的封建时代的知识分子,他还做不到那么超脱,所以,他不得不开始忙于一系列繁杂的丧事。丧事差不多了,到了8月初,徐光启请了假,便扶柩回了上海。这一去就是三年。
  此时利玛窦一直在北京,中间的确为《几何原本》的事情他们曾经联系过一次,但那次主要是让徐光启想办法在南方刊印。此后,他们再没联系。三年后,即1610年5月11日,利玛窦去世了。而徐光启到了12月15日才回到北京。此时利玛窦已于11月1日下葬。所以他们从1607年8月之后,再也未曾谋过面。
  就因为这个意外,使《几何原本》的后9卷的翻译推迟了200多年,才由清代数学家李善兰和英国人伟烈亚力合作完成。
  李善兰(1811~1882),字壬叔,号秋纫,浙江海宁人,自幼喜欢数学。
  1852年到上海后,李善兰与伟烈亚力相约,继续完成徐光启、利玛窦未完成的事业,合作翻译《几何原本》后9卷,并与1856年完成此项工作。
  至此,欧几里得的这一伟大著作第一次完整地引入中国,对中国近代数学的发展起到了重要的作用。
  清康熙帝时,编辑数学百科全书《数理精蕴》(公元1723年),其中收有《几何原本》一书,但这是根据公元十八世纪法国几何学教科书翻译的,和欧几里得的《几何原本》差别很大。
对《几何原本》的评价
  徐光启在评论《几何原本》时说过:“此书为益能令学理者祛其浮气,练其精心;学事者资其定法,发其巧思,故举世无一人不当学。”其大意是:读《几何原本》的好处在于能去掉浮夸之气,练就精思的习惯,会按一定的法则,培养巧妙的思考。所以全世界人人都要学习几何。
  徐光启同时也说过:“能精此书者,无一事不可精;好学此书者,无一事不可学。”
  爱因斯坦更是认为:“如果欧几里得未激发你少年时代的科学热情,那你肯定不是天才科学家。”
  由此可见《原本》一书对人类科学思维的影响是何等巨大。
《几何原本》
  《几何原本
  "Elements"
    油e丫uQn比n
  《几何原本》(Ele。洲括)几何学的经典著作。
  古希腊数学家欧几里得约于公元前300年编成。全书共
  15卷。第1卷阐述由直线和曲线构成的平面图形;第2卷
  讨论代数恒等式,第3~选卷探讨圆的几何学;第5~6一卷
  阐明比例论及其在平面图形上的应用;第7一9卷是有关
  数的理论;第10卷提出无公度的几何量;第11一13‘卷讨
  论立体几何。至于第14、15卷,数学史家认为不是欧几里
  得本人所作‘这部著作先后被翻译成阿拉伯文、拉丁文等
  各种文本。1 607年,中国科学家徐光启与意大利的传教
  士利玛窦将此书的前6卷译成中文,后9卷则于1856年
  由伟烈西力和李善兰译出。
  欧几里得力图依照严格的逻辑演绎方法整理当时积
  累起来的几何知识。他在《几何原本》中先给出定义、公理
  和公设,然后一步步推出有关定理。该书构造了数学史上
  第一个重要的初等几何公理系统,标志着数学知识系统
  化的开端。2 000多年来,人们都把它作为一部优秀的研
  究几何的入门著作和教科书,其中的演绎系统化息想,一
  直影响着数学的发展,并渗透到自然科学、甚至哲学中。
  如近代唯理论者就认为演绎方法是建立最可靠知识的手
  段,并把它作为追求理想科学体系的最佳方法。
  由于《几何原本》在逻辑上显得很严密,而且长期以
  来人们没有认识到一个公理系统所必须满足的逻辑条
  件,无法对该书作出严格的逻辑检验,因此普遍认为它是
  绝对严格的典范。直到非欧几黑得JL何思想得到发展,特
  别是D·希尔伯特的《几何基础》一书发表以后,人们才深
  刻地乞人识到《几何原本》不是绝对严格的。
  (黄耀枢)
    
相关词
数学欧几里德几何公理几何学徐光启西学东渐刻几何原本序欧几里德算法
包含词
几何原本几刻几何原本序
几何原本的内容几何原本的传播
刻《几何原本》序《几何原本》的内容
几何原本的一些内容几何原本六卷明西洋利玛窦口译明徐光启笔受据海山仙馆丛书本排印
几何原本六卷明西洋利玛宝译明徐光启笔受