|
|
①〈书〉多少价值~?ㄧ曾~时。②几何学的简称。 |
|
∶多少(用于反问) |
|
年几何矣。——《战国策·赵策》 |
|
罗敷年几何。——《乐府诗集·陌上桑》 |
|
所杀几何。——唐· 李朝威《柳毅传》 |
|
相去能几何。——明· 刘基《诚意伯刘文成公文集》 |
|
价值几何。 |
|
∶几何学简称 |
|
犹若干,多少。《诗·小雅·巧言》:“为犹将多,尔居徒几何?” 马瑞辰 通释:“尔居徒几何,即言尔徒几何也。”《史记·白起王翦列传》:“於是 始皇 问 李信 :‘吾欲攻取 荆 ,於将军度用几何人而足?’”《新唐书·李多祚传》:“﹝ 张柬之 ﹞乃从容谓曰:‘将军居北门几何?’曰:‘三十年矣。’” 清 刘献廷 《广阳杂记》卷四:“小子费亦不貲矣!家私几何,乃如此胡为耶!”《老残游记》第三回:“ 高公 又问:‘药金请教几何?’” 郭小川 《春歌》之二:“战斗的诗情能装千筐万箩,而我的笔墨呢,又有几何!” |
|
数学中的一门分科。详“ 几何学 ”。 |
|
几何(jǐ-) : ①多少:其成就能有几何|不知费用尚需几何?
②数学中的一门分科。详“几何学”。 |
|
1 多少(用于反问)
年几何矣。——《战国策·赵策》
罗敷年几何。——《乐府诗集·陌上桑》
所杀几何。——唐·李朝威《柳毅传》
相去能几何。——明·刘基《诚意伯刘文成公文集》
价值几何。
“几何”名称的由来——科学家徐光启
2.学过数学的人,都知道它有一门分科叫作“几何学”,然而却不一定知道“几何”这个名称是怎么来的。在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《短歌行》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。
徐光启(1562-1633年)出生在上海县法华汇(今上海市徐家汇)一个小商人的家里。当时的法华汇还不是城市而是乡村,四周都是种满庄稼的农田。徐光启小时候进学堂读书,就很留心观察周围的农事,对农业生产有着浓厚的兴趣。二十岁考中秀才以后,他在家乡和广东、广西教书,白天给学生上课,晚上常常默对孤灯,广泛阅读古代的农书,钻研农业生产技术。由于农业生产同天文历法、水利工程的关系非常密切,而天文历法、水利工程又离不开数学,他又进一步博览古代的天文历法、水利和数学著作
向下滚动上下滚动
1594年,徐光启在韶州(今广东韶关)教书的时候,认识了一个来中国传播天主教的耶稣会土郭静居。在郭静居那儿,他第一次见到一幅世界地图,知道在中国之外竟有那么大的一个世界;又第一次听说地球是圆的,有个叫麦哲伦的西洋人乘船绕地球环行了一周;还第一次听说意大利科学家伽利略制造了天文望远镜,能清楚地观测天上星体的运行。所有这些,对他来说,都是闻所未闻的新鲜事。从此,他又开始接触西方近代的自然科学,知识更加丰富了。
明朝末年,宦官专权,政治黑暗,人民的生活非常痛苦,农民起义到处发生;正在东北崛起的满洲贵族,又不时对明朝发动进攻,整个社会处在动荡不安的状态。象所有正直的知识分子一样,徐光启富于爱国的热忱,他希望能够利用科学技术帮助国家富强起来,使天下的黎民过上“丰衣食,绝饥寒”的安定富裕的生活。因此,他认为不仅应该认真总结我国古代的科学成就,还应该很好地学习西方先进的自然科学,取长补短,使我国的科学技术得到进一步的发展。
在同郭静居交往的时候,徐光启听说到中国来传教的耶稣会会长利玛窦精通西洋的自然科学,就到处打听他的下落,想当面向他请教。1600年,他得到了利玛窦正在南京传教的消息,即专程前往南京拜访。
利玛窦是意大利人,原名叫玛太奥·利奇。他从小勤奋好学,对数学、物理学、天文学、医学都很有造诣,而且擅长制作钟表、日晷(gui鬼,日晷是古代一种测定时间的仪器),善于绘制地图和雕刻。三十岁从神学院毕业,利玛窦被耶稣会派到中国来传教。他为了便于同中国人交往,刻苦学习中国的语言、文字和古代文化,换上中国的服装,按照中国的礼节和风俗习惯进行活动,还为自己取了利玛窦这样一个中国名字。
徐光启见到利玛窦,对他表示了仰慕之情,希望向他学习西方的自然科学。利玛窦看他是个读书人,也想向他学习中国古代的文化典籍,并热衷发展他为天主教徒,就同他交谈起来。他们从天文谈到地理,又谈到中国和西方的数学。临别的时候,利玛窦对徐光启学习西方自然科学的请求未置可否,却送给他两本宣传天主教的小册子。一本是《马可福音》,讲的是耶稣的故事,另一本是《天主实义》,是利玛窦用中文写的解释天主教义的书。徐光启心里明白,这是要他先加入天主教,然后才肯向他传播西方的科学知识。后来,他经过三年之久的慎重考虑,为了学习西方的自然科学,就全家加入了天主教。
加入天主教的第二年,四十二岁的徐光启考中进士,担任翰林院庶吉士的官职,在北京住了下来。而利玛窦在同徐光启见面的第二年,也来到了北京。他向明神宗贡献礼品,得到明神宗的批准,在宣武门外置了一处住宅,长期留居下来,进行传教活动。徐光启在公余之暇,常常去拜访利玛窦,你来我往,彼此慢慢熟悉了,开始建立起较深的友谊。1606年,徐光启再次请求利玛窦传授西方的科学知识,利玛窦爽快地答应了。他用公元前三世纪左右希腊数学家欧几里得的著作《原本》做教材,对徐光启讲授西方的数学理论。利玛窦每两天讲授一次,徐光启总是准时到达,不论是朔风怒吼,还是大雪纷飞,从不间断。
经过一段时间的学习,徐光启完全弄懂了欧几里得这部著作的内容,深深地为它的基本理论和逻辑推理所折服,认为这些正是我国古代数学的不足之处。他感到,我国的古代数学虽然也取得了极其辉煌的成就,但千百年来一直受到经验实证的限制,未能很好地运用逻辑推理的方法。如果能把欧几里得的这部著作介绍过来,对我国数学的发展将是很有好处的。于是,徐光启建议利玛窦同他合作,一起把它译成中文。开始,利玛窦对这个建议颇感犹豫,因为欧几里得的这部著作是用拉丁文写的,拉丁文和中文语法不同,词汇也很不一样,书里的许多数学专业名词在中文里都没有相应的现成词汇。要译得准确、流畅而又通俗易懂,是很不容易的。早先曾有一个姓蒋的举人同利玛窦合作试译过,就因为这个缘故而不得不半途而废。但是徐光启却很有信心,他认为只要肯下功夫,多动脑筋,仔细推敲,反复修改,总是可以译成的。在他的一再劝说下,利玛窦也就同意了。
从1606年的冬天开始,他们两人开始了紧张的翻译工作。每天晚上,他们坐在灯烛之下,先由利玛窦用中文逐字逐句地口头翻译,再由徐光启草录下来。译完一段,徐光启再字斟句酌地作一番推敲修改,然后由利玛窦对照原著进行核对。遇有译得不妥当的地方,利玛窦就把原著再仔细地讲述一遍,让徐光启重新修改。如此反复数次,直到认为满意了,再接着译下一段。徐光启对翻译非常认真,常常是到了深夜,利玛窦休息了,他还独自坐在灯下加工、修改译稿。有时为了确定一个译名,他不断地琢磨、推敲,不知不觉地就忙到天亮。译文里的“平行线”、“三角形”、“对角”、“直角”、“锐角”、“钝角”、“相似”等等中文的名词术语,都是经过他呕心沥血的反复推敲而确定下来的。
从大雪纷飞的冬季忙到来年桃李花开的春天,徐光启和利玛窦译出了这部著作的前六卷。徐光启想一鼓作气,接着往下译,争取在年内译完后九卷,但利玛窦却主张先将前六卷刻印出版,听听反映再说。付印之前,徐光启又独自一人将译稿加工、润色了三遍,尽可能把译文改得准确。然后他又同利玛窦一起,共同敲定书名的翻译问题。这部著作的拉丁文原名叫《欧几里得原本》,如果直译成中文,不大象是一部数学著作。如果按照它的内容,译成《形学原本》,又显得太陈旧了。利玛窦说,中文里的“形学”,英文叫作“geo”,它的原意是希腊的土地测量的意思,能不能在中文的词汇里找个同它发音相似、意思也相近的词。徐光启查考了十几个词组,都不理想。后来他想起了“几何”一词,觉得它与“geo”音近意切,建议把书名译成《几何原本》,利玛窦感到很满意。1607年,《几何原本》前六卷正式出版,马上引起巨大的反响,成了明末清初从事数学工作的人的一部必读书,对发展我国的近代数学起了很大的作用。
后来,徐光启虽然没有能够再和利玛窦一起译出《几何原本》的后九卷,但他又陆续写了许多其他的科学著作,特别是《农政全书》这部巨著,在我国和世界科学史上都具有重要的地位。后世的人们,为了纪念徐光启在科学上的卓越贡献,就把他的家乡法华汇改名为徐家汇。
==古代几何学==
几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。
中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。
==名称的来历==
几何这个词最早来自于希腊语“γεωμετρία”,由“γέα”(土地)和“μετρε ĭν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语geo的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。
1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一次的使用出现。
==分支学科==
平面几何
立体几何
非欧几何
罗氏几何
黎曼几何
解析几何
射影几何
仿射几何
代数几何
微分几何
计算几何
拓扑学
分形几何
【知识拓展】
古希腊几何作图的三大问题是:①化圆为方,求作一正方形,使其面积等于一已知圆;②三等分任意角;③倍立方,求作一立方体,使其体积是一已知立方体的两倍。这些问题的难处,是作图只许用直尺(没有刻度,只能作直线的尺)和圆规。经过两千多年的探索,最后才证明在尺规的限制下,根本不可能作出所要求的图形。
希腊人强调作图只能用直尺圆规,有下列原因。①希腊几何的基本精神,是从极少的基本假定(定义、公理、公设)出发,推导出尽可能多的命题。对于作图工具,自然也相应地限制到不能再少的程度。②受柏拉图哲学思想的影响。柏拉图片面强调数学在训练智力方面的作用而忽视其实用价值。他主张通过几何学习达到训练逻辑思维的目的,因此工具要有所限制,正象体育竞赛要有器械的限制一样。③以毕达哥拉斯学派为代表的希腊人认为圆是最完美的平面图形,圆和直线是几何学最基本的研究对象。有了尺规,圆和直线已经能够作出,因此就规定只使用这两种工具。历史上最早明确提出尺规限制的是伊诺皮迪斯,以后逐渐成为一种公约,最后总结在欧几里得的《几何原本》之中。
圆和正方形都是常见的图形,怎样用尺规作一个正方形与已知圆等积?在历史上,也许没有任何一个几何问题象这个"化圆为方"问题那样强烈地引起人们的兴趣。早在公元前5世纪就有许多人研究这个问题,希腊人对于这种活动用一个专门的字""来表示,意思是“献身于化圆为方问题”,可见事情相当普遍。这问题的最早研究者是安纳萨戈拉斯,他因"不敬神"的罪名被捕入狱,在狱中潜心研究化圆为方问题。以后著名的研究者有希波克拉底、安提丰、希皮亚斯等人。安提丰提出一种“穷竭法”,是近代极限论的雏形。先作圆内接正方形(或正6边形),然后每次将边数加倍,得内接8、16、32、…边形,他相信“最后”的正多边形必与圆周重合。这样就可以化圆为方了。结论是错误的,然而却提供了求圆面积的近似方法,成为阿基米德计算圆周率方法的先导。与中国刘徽的割圆术不谋而合。
用尺规二等分一个角是轻而易举的,对于某些角,如90°、135°、180°,三等分也不难。自然会提出三等分任意角的问题。如能将60°角三等分,就可以作出正18边形和正9边形,三等分角问题就是由这一类问题引起的。关于倍立方问题的起源,有两个神话传说。第一个说鼠疫袭击提洛岛(爱琴海上小岛),一个预言者说已经得到神的谕示,必须将立方形的阿波罗祭坛体积加倍,瘟疫方能停息。一个工匠简单地将坛的各边加倍(体积变成原来的8倍),这并不符合神的意旨,因此瘟疫更加猖獗。错误发现后,希腊人将这个”提洛问题”去请教柏拉图。柏拉图说:神的真正意图是想使希腊人为忽视几何学而感到羞愧。另一个故事说克里特王米诺斯为儿子修坟,命令将原来设计的体积加倍,但仍保持立方的形状。
公元前5世纪,雅典的“智人学派”以上述三大问题为中心,开展研究。正因为不能用尺规来解决,常常使人闯入新的领域中去。例如激发了圆锥曲线、割圆曲线以及三、四次代数曲数的发现。
17世纪解析几何建立以后,尺规作图的可能性才有了准则。1837年p.l.旺策尔给出三等分任意角和倍立方不可能用尺规作图的证明,1882年c.l.f.von林德曼证明了 π的超越性,化圆为方的不可能性也得以确立。1895年(c.)f.克莱因总结了前人的研究,著《几何三大问题》(中译本,1930)一书,给出三大问题不可能用尺规来作图的简明证法,彻底解决了两千多年的悬案。
虽然如此,还是有许多人不管这些证明,想压倒前人所有的工作。他们宣称自己已解决了三大问题中的某一个,实际上他们并不了解所设的条件和不可解的道理。三大问题不能解决,关键在工具的限制,如果不限工具,那就根本不是什么难题,而且早已解决。例如阿基米德就曾用巧妙的方法三等分任意角。下面为了叙述简单,将原题稍加修改。在直尺边缘上添加一点p,命尺端为o。设所要三等分的角是∠acb,以c为心,op为半径作半圆交角边于a、b;使o点在ca延线上移动,p点在圆周上移动,当尺通过b时,联opb(见图)。由于op=pc=cb,易知
。
∠cob=1/3∠acb
这里使用的工具已不限于尺规,而且作图方法也与公设不合。另外两个问题也可以用别的工具解决。 |
1 多少(用于反问) A number (for ask) |
年几何矣。——《战国策·赵策》
罗敷年几何。——《乐府诗集·陌上桑》
所杀几何。——唐·李朝威《柳毅传》
相去能几何。——明·刘基《诚意伯刘文成公文集》
价值几何。 |
“几何”名称的由来——科学家徐光启 "Geometric" origin of the name - scientists Xu |
学过数学的人,都知道它有一门分科叫作“几何学”,然而却不一定知道“几何”这个名称是怎么来的。在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《短歌行》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。
徐光启(1562-1633年)出生在上海县法华汇(今上海市徐家汇)一个小商人的家里。当时的法华汇还不是城市而是乡村,四周都是种满庄稼的农田。徐光启小时候进学堂读书,就很留心观察周围的农事,对农业生产有着浓厚的兴趣。二十岁考中秀才以后,他在家乡和广东、广西教书,白天给学生上课,晚上常常默对孤灯,广泛阅读古代的农书,钻研农业生产技术。由于农业生产同天文历法、水利工程的关系非常密切,而天文历法、水利工程又离不开数学,他又进一步博览古代的天文历法、水利和数学著作。
1594年,徐光启在韶州(今广东韶关)教书的时候,认识了一个来中国传播天主教的耶稣会土郭静居。在郭静居那儿,他第一次见到一幅世界地图,知道在中国之外竟有那么大的一个世界;又第一次听说地球是圆的,有个叫麦哲伦的西洋人乘船绕地球环行了一周;还第一次听说意大利科学家伽利略制造了天文望远镜,能清楚地观测天上星体的运行。所有这些,对他来说,都是闻所未闻的新鲜事。从此,他又开始接触西方近代的自然科学,知识更加丰富了。
明朝末年,宦官专权,政治黑暗,人民的生活非常痛苦,农民起义到处发生;正在东北崛起的满洲贵族,又不时对明朝发动进攻,整个社会处在动荡不安的状态。象所有正直的知识分子一样,徐光启富于爱国的热忱,他希望能够利用科学技术帮助国家富强起来,使天下的黎民过上“丰衣食,绝饥寒”的安定富裕的生活。因此,他认为不仅应该认真总结我国古代的科学成就,还应该很好地学习西方先进的自然科学,取长补短,使我国的科学技术得到进一步的发展。
在同郭静居交往的时候,徐光启听说到中国来传教的耶稣会会长利玛窦精通西洋的自然科学,就到处打听他的下落,想当面向他请教。1600年,他得到了利玛窦正在南京传教的消息,即专程前往南京拜访。
利玛窦是意大利人,原名叫玛太奥·利奇。他从小勤奋好学,对数学、物理学、天文学、医学都很有造诣,而且擅长制作钟表、日晷(guĭ,日晷是古代一种测定时间的仪器),善于绘制地图和雕刻。三十岁从神学院毕业,利玛窦被耶稣会派到中国来传教。他为了便于同中国人交往,刻苦学习中国的语言、文字和古代文化,换上中国的服装,按照中国的礼节和风俗习惯进行活动,还为自己取了利玛窦这样一个中国名字。
徐光启见到利玛窦,对他表示了仰慕之情,希望向他学习西方的自然科学。利玛窦看他是个读书人,也想向他学习中国古代的文化典籍,并热衷发展他为天主教徒,就同他交谈起来。他们从天文谈到地理,又谈到中国和西方的数学。临别的时候,利玛窦对徐光启学习西方自然科学的请求未置可否,却送给他两本宣传天主教的小册子。一本是《马可福音》,讲的是耶稣的故事,另一本是《天主实义》,是利玛窦用中文写的解释天主教义的书。徐光启心里明白,这是要他先加入天主教,然后才肯向他传播西方的科学知识。后来,他经过三年之久的慎重考虑,为了学习西方的自然科学,就全家加入了天主教。
加入天主教的第二年,四十二岁的徐光启考中进士,担任翰林院庶吉士的官职,在北京住了下来。而利玛窦在同徐光启见面的第二年,也来到了北京。他向明神宗贡献礼品,得到明神宗的批准,在宣武门外置了一处住宅,长期留居下来,进行传教活动。徐光启在公余之暇,常常去拜访利玛窦,你来我往,彼此慢慢熟悉了,开始建立起较深的友谊。1606年,徐光启再次请求利玛窦传授西方的科学知识,利玛窦爽快地答应了。他用公元前三世纪左右希腊数学家欧几里得的著作《原本》做教材,对徐光启讲授西方的数学理论。利玛窦每两天讲授一次,徐光启总是准时到达,不论是朔风怒吼,还是大雪纷飞,从不间断。
经过一段时间的学习,徐光启完全弄懂了欧几里得这部著作的内容,深深地为它的基本理论和逻辑推理所折服,认为这些正是我国古代数学的不足之处。他感到,我国的古代数学虽然也取得了极其辉煌的成就,但千百年来一直受到经验实证的限制,未能很好地运用逻辑推理的方法。如果能把欧几里得的这部著作介绍过来,对我国数学的发展将是很有好处的。于是,徐光启建议利玛窦同他合作,一起把它译成中文。开始,利玛窦对这个建议颇感犹豫,因为欧几里得的这部著作是用拉丁文写的,拉丁文和中文语法不同,词汇也很不一样,书里的许多数学专业名词在中文里都没有相应的现成词汇。要译得准确、流畅而又通俗易懂,是很不容易的。早先曾有一个姓蒋的举人同利玛窦合作试译过,就因为这个缘故而不得不半途而废。但是徐光启却很有信心,他认为只要肯下功夫,多动脑筋,仔细推敲,反复修改,总是可以译成的。在他的一再劝说下,利玛窦也就同意了。
从1606年的冬天开始,他们两人开始了紧张的翻译工作。每天晚上,他们坐在灯烛之下,先由利玛窦用中文逐字逐句地口头翻译,再由徐光启草录下来。译完一段,徐光启再字斟句酌地作一番推敲修改,然后由利玛窦对照原著进行核对。遇有译得不妥当的地方,利玛窦就把原著再仔细地讲述一遍,让徐光启重新修改。如此反复数次,直到认为满意了,再接着译下一段。徐光启对翻译非常认真,常常是到了深夜,利玛窦休息了,他还独自坐在灯下加工、修改译稿。有时为了确定一个译名,他不断地琢磨、推敲,不知不觉地就忙到天亮。译文里的“平行线”、“三角形”、“对角”、“直角”、“锐角”、“钝角”、“相似”等等中文的名词术语,都是经过他呕心沥血的反复推敲而确定下来的。
从大雪纷飞的冬季忙到来年桃李花开的春天,徐光启和利玛窦译出了这部著作的前六卷。徐光启想一鼓作气,接着往下译,争取在年内译完后九卷,但利玛窦却主张先将前六卷刻印出版,听听反映再说。付印之前,徐光启又独自一人将译稿加工、润色了三遍,尽可能把译文改得准确。然后他又同利玛窦一起,共同敲定书名的翻译问题。这部著作的拉丁文原名叫《欧几里得原本》,如果直译成中文,不大象是一部数学著作。如果按照它的内容,译成《形学原本》,又显得太陈旧了。利玛窦说,中文里的“形学”,英文叫作“Geo”,它的原意是希腊的土地测量的意思,能不能在中文的词汇里找个同它发音相似、意思也相近的词。徐光启查考了十几个词组,都不理想。后来他想起了“几何”一词,觉得它与“Geo”音近意切,建议把书名译成《几何原本》,利玛窦感到很满意。1607年,《几何原本》前六卷正式出版,马上引起巨大的反响,成了明末清初从事数学工作的人的一部必读书,对发展我国的近代数学起了很大的作用。
后来,徐光启虽然没有能够再和利玛窦一起译出《几何原本》的后九卷,但他又陆续写了许多其他的科学著作,特别是《农政全书》这部巨著,在我国和世界科学史上都具有重要的地位。后世的人们,为了纪念徐光启在科学上的卓越贡献,就把他的家乡法华汇改名为徐家汇。 |
==古代几何学== Ancient geometry == == |
几何最早的有记录的开端可以追溯到古埃及(参看古埃及数学),古印度(参看古印度数学),和古巴比伦(参看古巴比伦数学),其年代大约始于公元前3000年。早期的几何学是关于长度,角度,面积和体积的经验原理,被用于满足在测绘,建筑,天文,和各种工艺制作中的实际需要。在它们中间,有令人惊讶的复杂的原理,以至于现代的数学家很难不用微积分来推导它们。例如,埃及和巴比伦人都在毕达哥拉斯之前1500年就知道了毕达哥拉斯定理(勾股定理);埃及人有方形棱锥的锥台(截头金字塔形)的体积的正确公式;而巴比伦有一个三角函数表。
中国文明和其对应时期的文明发达程度相当,因此它可能也有同样发达的数学,但是没有那个时代的遗迹可以使我们确认这一点。也许这是部分由于中国早期对于原始的纸的使用,而不是用陶土或者石刻来记录他们的成就。 |
==名称的来历== == == Origin of the name |
几何这个词最早来自于希腊语“γεωμετρία”,由“γέα”(土地)和“μετρε ĭν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、意并译。
1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期,已鲜有“形学”一词的使用出现。 |
|
平面几何
立体几何
球面几何
非欧几何
罗氏几何
黎曼几何
解析几何
射影几何
仿射几何
代数几何
微分几何
计算几何
拓扑学
分形几何 |
知识拓展 Knowledge Development |
古希腊几何作图的三大问题是:①化圆为方,求作一正方形,使其面积等于一已知圆;②三等分任意角;③倍立方,求作一立方体,使其体积是一已知立方体的两倍。这些问题的难处,是作图只许用直尺(没有刻度,只能作直线的尺)和圆规。经过两千多年的探索,最后才证明在尺规的限制下,根本不可能作出所要求的图形。
希腊人强调作图只能用直尺圆规,有下列原因。①希腊几何的基本精神,是从极少的基本假定(定义、公理、公设)出发,推导出尽可能多的命题。对于作图工具,自然也相应地限制到不能再少的程度。②受柏拉图哲学思想的影响。柏拉图片面强调数学在训练智力方面的作用而忽视其实用价值。他主张通过几何学习达到训练逻辑思维的目的,因此工具要有所限制,正象体育竞赛要有器械的限制一样。③以毕达哥拉斯学派为代表的希腊人认为圆是最完美的平面图形,圆和直线是几何学最基本的研究对象。有了尺规,圆和直线已经能够作出,因此就规定只使用这两种工具。历史上最早明确提出尺规限制的是伊诺皮迪斯,以后逐渐成为一种公约,最后总结在欧几里得的《几何原本》之中。
圆和正方形都是常见的图形,怎样用尺规作一个正方形与已知圆等积?在历史上,也许没有任何一个几何问题象这个"化圆为方"问题那样强烈地引起人们的兴趣。早在公元前5世纪就有许多人研究这个问题,希腊人对于这种活动用一个专门的字""来表示,意思是“献身于化圆为方问题”,可见事情相当普遍。这问题的最早研究者是安纳萨戈拉斯,他因"不敬神"的罪名被捕入狱,在狱中潜心研究化圆为方问题。以后著名的研究者有希波克拉底、安提丰、希皮亚斯等人。安提丰提出一种“穷竭法”,是近代极限论的雏形。先作圆内接正方形(或正6边形),然后每次将边数加倍,得内接8、16、32、…边形,他相信“最后”的正多边形必与圆周重合。这样就可以化圆为方了。结论是错误的,然而却提供了求圆面积的近似方法,成为阿基米德计算圆周率方法的先导。与中国刘徽的割圆术不谋而合。
用尺规二等分一个角是轻而易举的,对于某些角,如90°、135°、180°,三等分也不难。自然会提出三等分任意角的问题。如能将60°角三等分,就可以作出正18边形和正9边形,三等分角问题就是由这一类问题引起的。关于倍立方问题的起源,有两个神话传说。第一个说鼠疫袭击提洛岛(爱琴海上小岛),一个预言者说已经得到神的谕示,必须将立方形的阿波罗祭坛体积加倍,瘟疫方能停息。一个工匠简单地将坛的各边加倍(体积变成原来的8倍),这并不符合神的意旨,因此瘟疫更加猖獗。错误发现后,希腊人将这个”提洛问题”去请教柏拉图。柏拉图说:神的真正意图是想使希腊人为忽视几何学而感到羞愧。另一个故事说克里特王米诺斯为儿子修坟,命令将原来设计的体积加倍,但仍保持立方的形状。 三等分角不能的原因是三次方程的实数根无法用尺规作出。
公元前5世纪,雅典的“智人学派”以上述三大问题为中心,开展研究。正因为不能用尺规来解决,常常使人闯入新的领域中去。例如激发了圆锥曲线、割圆曲线以及三、四次代数曲数的发现。
17世纪解析几何建立以后,尺规作图的可能性才有了准则。1837年P.L.旺策尔给出三等分任意角和倍立方不可能用尺规作图的证明,1882年C.L.F.von林德曼证明了 π的超越性,化圆为方的不可能性也得以确立。1895年(C.)F.克莱因总结了前人的研究,著《几何三大问题》(中译本,1930)一书,给出三大问题不可能用尺规来作图的简明证法,彻底解决了两千多年的悬案。
虽然如此,还是有许多人不管这些证明,想压倒前人所有的工作。他们宣称自己已解决了三大问题中的某一个,实际上他们并不了解所设的条件和不可解的道理。三大问题不能解决,关键在工具的限制,如果不限工具,那就根本不是什么难题,而且早已解决。例如阿基米德就曾用巧妙的方法三等分任意角。下面为了叙述简单,将原题稍加修改。在直尺边缘上添加一点p,命尺端为O。设所要三等分的角是∠ACB,以C为心,Op为半径作半圆交角边于A、B;使O点在CA延线上移动,p点在圆周上移动,当尺通过B时,联OpB(见图)。由于Op=pC=CB,易知
。
∠COB=1/3∠ACB
这里使用的工具已不限于尺规,而且作图方法也与公设不合。另外两个问题也可以用别的工具解决。
几何的起源
几何的发展史(即:"几何"这个名字从何而来?)几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念,并且逐步认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。
正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。
几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古希腊都是几何学的重要发源地。
大量出土文物证明,在我国的史前时期,人们已经掌握了许多几何的基本知识,看一看远古时期人们使用过的物品中那许许多多精巧的、对称的图案的绘制,一些简单设计但是讲究体积和容积比例的器皿,都足以说明当时人们掌握的几何知识是多么丰富了。
几何之所以能成为一门系统的学科,希腊学者的工作曾起了十分关键的作用。两千多年前的古希腊商业繁荣,生产比较发达,一批学者热心追求科学知识,研究几何就是最感兴趣的内容,在这里应当提及的是哲学家、几何学家柏拉图和哲学家亚里士多德对发展几何学的贡献。
柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导逐步趋向于系统和严密的方向发展。柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等几何学中,仍是运用三段论的形式来进行推理。
但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里得。
欧几里得在公元前300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些几何原理。他非常详尽的搜集了当时所能知道的一切几何事实,按照柏拉图和亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨著——《几何原本》。
《几何原本》的伟大历史意义在于,它是用公理法建立起演绎的数学体系的最早典范。在这部著作里,全部几何知识都是从最初的几个假设除法、运用逻辑推理的方法展开和叙述的。也就是说,从《几何原本》发表开始,几何才真正成为了一个有着比较严密的理论系统和科学方法的学科。
欧几里得的《几何原本》
欧几里得的《几何原本》共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术得里论;最后讲述立体几何的内容。
从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧式几何。
《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。《几何原本》第一卷列有23个定义,5条公理,5条公设。(其中最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。)
这些定义、公理、公设就是《几何原本》全书的基础。全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。比如后面出现的每一个定理都写明什么是已知、什么是求证。都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。
关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
欧几里得《几何原本》的诞生在几何学发展的历史中具有重要意义。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,但是欧几里得几何学仍旧是中学生学习数学基础知识的好教材。
由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
近代物理学的科学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变原理。
在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
现代几何公理体系
人们对《几何原本》中在逻辑结果方面存在的一些漏洞、破绽的发现,正是推动几何学不断向前发展的契机。最后德国数学家希尔伯特在总结前人工作的基础上,在他1899年发表的《几何基础》一书中提出了一个比较完善的几何学的公理体系。这个公理体系就被叫做希尔伯特公理体。
希尔伯特不仅提出了—个完善的几何体系,并且还提出了建立一个公理系统的原则。就是在一个几何公理系统中,采取哪些公理,应该包含多少条公理,应当考虑如下三个方面的问题:
第一,共存性(和谐性),就是在一个公理系统中,各条公理应该是不矛盾的,它们和谐而共存在同一系统中。
第二,独立性,公理体系中的每条公理应该是各自独立而互不依附的,没有一条公理是可以从其它公理引伸出来的。
第三,完备性,公理体系中所包含的公理应该是足够能证明本学科的任何新命题。
这种用公理系统来定义几何学中的基本对象和它的关系的研究方法,成了数学中所谓的“公理化方法”,而把欧几里得在《几何原本》提出的体系叫做古典公理法。
公理化的方法给几何学的研究带来了一个新颖的观点,在公理法理论中,由于基本对象不予定义,因此就不必探究对象的直观形象是什么,只专门研究抽象的对象之间的关系、性质。从公理法的角度看,我们可以任意地用点、线、面代表具体的事物,只要这些具体事物之间满足公理中的结合关系、顺序关系、合同关系等,使这些关系满足公理系统中所规定的要求,这就构成了几何学。
因此,凡是符合公理系统的元素都能构成几何学,每一个几何学的直观形象不止只有—个,而是可能有无穷多个,每一种直观形象我们把它叫做几何学的解释,或者叫做某种几何学的模型。平常我们所熟悉的几何图形,在研究几何学的时候,并不是必须的,它不过是一种直观形象而已。
就此,几何学研究的对象更加广泛了,几何学的含义比欧几里得时代更为抽象。这些,都对近代几何学的发展带来了深远的影响。 |
一个世界闻名的初等几何命题 A world-famous in Elementary Geometry |
众所周知,一个三角形,如果它是等腰三角形,那么它两个底角的角平分线相等。一个数学真命题的提出,人们往往喜欢追问它的逆命题的真伪,现在问:一个三角形,它有两个角的平分线相等,它是否是等腰三角形呢?回答是肯定的,但是要证明它却不那么简单,最好的方法是用反证法。
如:
在△ABC中角平分线BD,CD交于点D,BD=CD.试证明△ABC是等腰三角形。
证:∵BD=CD
∴∠DBC=∠DCB
∵BD,CD是∠ABC和∠ACB的角平分线
∴∠ABC=∠ACB
∴AB=AC,即△ABC是等腰三角形。 |
一些平面几何的著名定理 Some well-known theorem of plane geometry |
1、勾股定理(毕达哥拉斯定理)
2、射影定理(欧几里得定理)
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
4、四边形两边中心的连线与两条对角线中心的连线交于一点
5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,
21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有
BPPC×CQQA×ARRB=1
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.
28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
33、西摩松定理的逆定理:(略)
34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。
35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。
36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).
37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。
41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。
44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。
48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆.
49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。
51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。
52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。
53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。
54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。
55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。
60、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线。 |
世界名人对几何的看法 Geometric view of the world's celebrities |
1.坚信代数才是真实的。
----高斯(Gauss)
2.数形结合,数缺形少直观,形缺数难入微。
-----华罗庚
3.“我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”
------王菊珍
4.“一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” -----托尔斯泰
5."数学的本质在于它的自由.”---- 康扥尔(Cantor)
6.“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.”---- 康扥尔(Cantor)
7."没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明.”---- 希尔伯特(Hilbert)
8.“数学是无穷的科学”----赫尔曼外尔
9."问题是数学的心脏”---- P.R.Halmos
10.“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.” ----Hilbert
11.“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.”---- 高斯
12.“时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ----雷巴柯夫
13.“在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚
14.“天才=2%的灵感+98%的血汗。”---- 爱迪生
15.“要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ----季米特洛夫
16.“近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----爱因斯坦
17.“数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王.” ----高斯
18.“在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.” ----康扥尔
19.“只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.”
----希尔伯特
20.“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.” ----毕达哥拉斯
21.“一门科学,只有当它成功地运用数学时,才能达到真正完善的地步.” ----马克思
22.“一个国家的科学水平可以用它消耗的数学来度量.” ----拉奥
23.“数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗
24.“在奥林匹斯山上统治著的上帝,乃是永恒的数。” ----雅可比
25.“如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采
26.“不懂几何者免进。” ----柏拉图
27.“几何无王者之道!” ---- 欧几里得
28.“数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯
29.“没有大胆的猜测,就做不出伟大的发现。” ---- 牛顿
30.“数统治着宇宙。”----毕达哥拉斯
31.“数学,科学的女皇;数论,数学的女皇。”----高斯
32.“上帝创造了整数,所有其余的数都是人造的。” ----克隆内克
33.“上帝是一位算术家” ----雅克比
34.“一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯
35.“纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海
36.“可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦 |
|
- : geometry, adj of geometry, of or like the lines, figures, etc used in geometry, geometric
- n.: quadrivial, quadrivium, how much; how many, how much
|
|
- n. géométrie
|
|
科学 | 数学 | 百科辞典 | 百科大全 | 自然科学 | 宇宙 | 广义相对论 | 公式 | 学科 | 数学家 | 代数 | 方程 | 数学难题 | 定义 | 圆 | 数学概念 | 曲线 | 更多结果... |
|
|
|
|
几何学 | 分形几何 | 射影几何学 | 微分几何 | 欧式几何 | 拓扑几何学 | 非欧式几何 | 解析几何 | 代数几何 | |
|