【人物介紹】
物理學家、數學家卡爾·弗裏德裏希·高斯 高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生於不倫瑞剋,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。高斯被認為是最重要的數學家之一,有數學王子的美譽,並被譽為歷史上偉大的數學家之一,和阿基米德、牛頓、歐拉同享盛名。
高斯1777年4月30日生於不倫瑞剋的一個工匠家庭,1855年2月23日卒於哥廷根。幼時傢境貧睏,但聰敏異常,受一貴族資助纔進學校受教育。1795~1798年在格丁根大學學習1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文臺臺長直至逝世。
高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分註重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。
1792年,15歲的高斯進入Braunschweig學院。在那裏,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的“二次互反律”(Law of Quadratic Reciprocity)、“質數分佈定理”(prime numer theorem)、及“算術幾何平均”(arithmetic-geometric mean)。
1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。5年以後,高斯又證明了形如"Fermat素數"邊數的正多邊形可以由尺規作出。
1855年2月23日清晨,高斯於睡夢中去世。
生平
高斯是一對普通夫婦的兒子。他的母親是一個貧窮石匠的女兒,雖然十分聰明,但卻沒有接受過教育,近似於文盲。在她成為高斯父親的第二個妻子之前,她從事女傭工作。他的父親曾做過園丁,工頭,商人的助手和一個小保險公司的評估師。當高斯三歲時便能夠糾正他父親的藉債賬目的事情,已經成為一個軼事流傳至今。他曾說,他在麥仙翁堆上學會計算。能夠在頭腦中進行復雜的計算,是上帝賜予他一生的天賦。
高斯用很短的時間計算出了小學老師佈置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。
哥廷根大學當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會産生一門完全不同的幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。
高斯的老師Bruettner與他助手 Martin Bartels 很早就認識到了高斯在數學上異乎尋常的天賦,同時Herzog Carl Wilhelm Ferdinand von Braunschweig也對這個天才兒童留下了深刻印象。於是他們從高斯14歲起,便資助其學習與生活。這也使高斯能夠在公元1792-1795年在Carolinum學院(今天Braunschweig學院的前身)學習。18歲時,高斯轉入哥廷根大學學習。在他19歲時,第一個成功的用尺規構造出了規則的17角形。
高斯於公元1805年10月5日與來自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)結婚。在公元1806年8月21日迎來了他生命中的第一個孩子約瑟。此後,他又有兩個孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成為哥廷根大學的教授和當地天文臺的臺長。
雖然高斯作為一個數學家而聞名於世,但這並不意味着他熱愛教書。儘管如此,他越來越多的學生成為有影響的數學家,如後來聞名於世的Richard Dedekind和黎曼。
高斯墓地:高斯非常信教且保守。他的父親死於1808年4月14日,晚些時候的1809年10月11日,他的第一位妻子Johanna也離開人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他們又有三個孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日她的第二位妻子也死去,1837年高斯開始學習俄語。1839年4月18日,他的母親在哥廷根逝世,享年95歲。高斯於1855年2月23日凌晨1點在哥廷根去世。他的很多散布在給朋友的書信或筆記中的發現於1898年被發現。
貢獻
18歲的高斯發現了質數分佈定理和最小二乘法。通過對足夠多的測量數據的處理後,可以得到一個新的、概率性質的測量結果。在這些基礎之上,高斯隨後專註於麯面與麯綫的計算,並成功得到高斯鐘形麯綫(正態分佈麯綫)。其函數被命名為標準正態分佈(或高斯分佈),並在概率計算中大量使用。
在高斯19歲時,僅用沒有刻度的尺子與圓規便構造出了正17邊形(阿基米德與牛頓均未畫出)。並為流傳了2000年的歐氏幾何提供了自古希臘時代以來的第一次重要補充。
高斯計算的𠔌神星軌跡高斯總結了復數的應用,並且嚴格證明了每一個n階的代數方程必有n個復數解。在他的第一本著名的著作《數論》中,作出了二次互反律的證明,成為數論繼續發展的重要基礎。在這部著作的第一章,導出了三角形全等定理的概念。
高斯在他的建立在最小二乘法基礎上的測量平差理論的幫助下,結算出天體的運行軌跡。並用這種方法,發現了𠔌神星的運行軌跡。𠔌神星於1801年由意大利天文學家皮亞齊發現,但他因病耽誤了觀測,失去了這顆小行星的軌跡。皮亞齊以希臘神話中“豐收女神”(Ceres)來命名它,即𠔌神星(Planetoiden Ceres),並將以前觀測的位置發表出來,希望全球的天文學家一起尋找。高斯通過以前的三次觀測數據,計算出了𠔌神星的運行軌跡。奧地利天文學家 Heinrich Olbers在高斯的計算出的軌道上成功發現了這顆小行星。從此高斯名揚天下。高斯將這種方法著述在著作《天體運動論》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。
高斯設計的漢諾威大地測量的三角網為了獲知任意一年中復活節的日期,高斯推導了復活節日期的計算公式。
在1818年至1826年之間高斯主導了漢諾威公國的大地測量工作。通過他發明的以最小二乘法為基礎的測量平差的方法和求解綫性方程組的方法,顯著的提高了測量的精度。出於對實際應用的興趣,他發明了日光反射儀,可以將光束反射至大約450公裏外的地方。高斯後來不止一次地為原先的設計作出改進,試製成功被廣泛應用於大地測量的鏡式六分儀。
高斯親自參加野外測量工作。他白天觀測,夜晚計算。五六年間,經他親自計算過的大地測量數據,超過100萬次。當高斯領導的三角測量外場觀測已走上正軌後,高斯就把主要精力轉移到處理觀測成果的計算上來,並寫出了近20篇對現代大地測量學具有重大意義的論文。在這些論文中,推導了由橢圓面嚮圓球面投影時的公式,並作出了詳細證明,這套理論在今天仍有應用價值。漢諾威公國的大地測量工作直到1848年纔結束,這項大地測量史上的巨大工程,如果沒有高斯在理論上的仔細推敲,在觀測上力圖合理精確,在數據處理上盡量周密細緻的出色表現,就不能完成。在當時條件下布設這樣大規模的大地控製網,精確地確定2578個三角點的大地坐標,可以說是一項了不起的成就。
日光反射儀由於要解决如何用橢圓在球面上的正形投影理論解决大地測量問題,高斯亦在這段時間從事麯面和投影的理論,這成了微分幾何的重要基礎。他獨自提出不能證明歐氏幾何的平行公設具有‘物理的’必然性,至少不能用人類理智,也不能給予人類理智以這種證明。但他的非歐幾何的理論並沒有發表,也許是因為對處於同時代的人不能理解對該理論的擔憂。後來相對論證明了宇宙空間實際上是非歐幾何的空間,高斯的思想被近100年後的物理學接受了。當時高斯試圖在漢諾威公國的大地測量中通過測量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三個山頭所構成的三角形的內角和,以驗證非歐幾何的正確性,但未成功。高斯的朋友鮑耶的兒子雅諾斯在1823年證明了非歐幾何的存在,高斯對他勇於探索的精神表示了贊揚。1840年,羅巴切夫斯基又用德文寫了《平行綫理論的幾何研究》一文。這篇論文發表後,引起了高斯的註意,他非常重視這一論證,積極建議哥廷根大學聘請羅巴切夫斯基為通信院士。為了能直接閱讀他的著作,從這一年開始,63歲的高斯開始學習俄語,並最終掌握了這門外語。最終高斯成為和微分幾何的始祖(高斯,雅諾斯、羅巴切夫斯基)中最重要的一人。
高斯和韋伯19世紀的30年代,高斯發明了磁強計,辭去了天文臺的工作,而轉嚮物理研究。他與韋伯(1804-1891)在電磁學的領域共同工作。他比韋伯年長27歲,以亦師亦友的身份進行合作。1833年,通過受電磁影響的羅盤指針,他嚮韋伯發送了電報。這不僅僅是從韋伯的實驗室與天文臺之間的第一個電話電報係統,也是世界首創。儘管綫路纔8千米長。1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置,並於次年得到美國科學家的證實。
高斯和韋伯共同設計的電報高斯研究數個領域,但衹將他思想中成熟的理論發表。他經常提醒他的同事,該同事的結論已經被自己很早的證高斯明,衹是因為基礎理論的不完備性而沒有發表。批評者說他這樣是因為極愛出風頭。實際上高斯衹是一部瘋狂的打字機,將他的結果都記錄起來。在他死後,有20部這樣的筆記被發現,纔證明高斯的宣稱是事實。一般認為,即使這20部筆記,也不是高斯全部的筆記。下薩剋森州和哥廷根大學圖書館已經將高斯的全部著作數字化並置於互聯網上。
高斯的肖像已經被印在從1989年至2001年流通的10德國馬剋的紙幣上。
著作
1799年:關於代數基本定理的博士論文 (Doktorarbeit uber den Fundamentalsatz der Algebra)
1801年:算術研究 (Disquisitiones Arithmeticae)
1809年:天體運動論 (Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)
1827年:麯面的一般研究 (Disquisitiones generales circa superficies curvas)
1843-1844年:高等大地測量學理論(上) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 1)
1846-1847年:高等大地測量學理論(下) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 2)
【物理單位】
高斯簡稱高(Gs,G),非國際通用的磁感應強度或磁通量的單位。為紀念德國物理學家和數學家高斯而命名。
一段導綫,若放在磁感應強度均勻的磁場中,方向與磁感應強度方向垂直的長直導在綫通有1電磁係單位的穩恆電流時,在每釐米長度的導綫受到電磁力為1達因,則該磁感應強度就定義為1高斯。
高斯是很小的單位,10000高斯等於1特斯拉(T)。
高斯是常見非法定計量單位,特[斯拉]是法定計量單位.
【人物介紹】
物理學家、數學家卡爾·弗裏德裏希·高斯 高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生於不倫瑞剋,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。高斯被認為是最重要的數學家之一,有數學王子的美譽,並被譽為歷史上偉大的數學家之一,和阿基米德、牛頓、歐拉同享盛名。
高斯1777年4月30日生於不倫瑞剋的一個工匠家庭,1855年2月23日卒於哥廷根。幼時傢境貧睏,但聰敏異常,受一貴族資助纔進學校受教育。1795~1798年在格丁根大學學習1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文臺臺長直至逝世。
高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分註重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。
1792年,15歲的高斯進入Braunschweig學院。在那裏,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的“二次互反律”(Law of Quadratic Reciprocity)、“質數分佈定理”(prime numer theorem)、及“算術幾何平均”(arithmetic-geometric mean)。
1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。5年以後,高斯又證明了形如"Fermat素數"邊數的正多邊形可以由尺規作出。
1855年2月23日清晨,高斯於睡夢中去世。
生平
高斯是一對普通夫婦的兒子。他的母親是一個貧窮石匠的女兒,雖然十分聰明,但卻沒有接受過教育,近似於文盲。在她成為高斯父親的第二個妻子之前,她從事女傭工作。他的父親曾做過園丁,工頭,商人的助手和一個小保險公司的評估師。當高斯三歲時便能夠糾正他父親的藉債賬目的事情,已經成為一個軼事流傳至今。他曾說,他在麥仙翁堆上學會計算。能夠在頭腦中進行復雜的計算,是上帝賜予他一生的天賦。
高斯用很短的時間計算出了小學老師佈置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和為(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。
哥廷根大學當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會産生一門完全不同的幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。
高斯的老師Bruettner與他助手 Martin Bartels 很早就認識到了高斯在數學上異乎尋常的天賦,同時Herzog Carl Wilhelm Ferdinand von Braunschweig也對這個天才兒童留下了深刻印象。於是他們從高斯14歲起,便資助其學習與生活。這也使高斯能夠在公元1792-1795年在Carolinum學院(今天Braunschweig學院的前身)學習。18歲時,高斯轉入哥廷根大學學習。在他19歲時,第一個成功的用尺規構造出了規則的17角形。
高斯於公元1805年10月5日與來自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)結婚。在公元1806年8月21日迎來了他生命中的第一個孩子約瑟。此後,他又有兩個孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成為哥廷根大學的教授和當地天文臺的臺長。
雖然高斯作為一個數學家而聞名於世,但這並不意味着他熱愛教書。儘管如此,他越來越多的學生成為有影響的數學家,如後來聞名於世的Richard Dedekind和黎曼。
高斯墓地:高斯非常信教且保守。他的父親死於1808年4月14日,晚些時候的1809年10月11日,他的第一位妻子Johanna也離開人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他們又有三個孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日她的第二位妻子也死去,1837年高斯開始學習俄語。1839年4月18日,他的母親在哥廷根逝世,享年95歲。高斯於1855年2月23日凌晨1點在哥廷根去世。他的很多散布在給朋友的書信或筆記中的發現於1898年被發現。
貢獻
18歲的高斯發現了質數分佈定理和最小二乘法。通過對足夠多的測量數據的處理後,可以得到一個新的、概率性質的測量結果。在這些基礎之上,高斯隨後專註於麯面與麯綫的計算,並成功得到高斯鐘形麯綫(正態分佈麯綫)。其函數被命名為標準正態分佈(或高斯分佈),並在概率計算中大量使用。
在高斯19歲時,僅用沒有刻度的尺子與圓規便構造出了正17邊形(阿基米德與牛頓均未畫出)。並為流傳了2000年的歐氏幾何提供了自古希臘時代以來的第一次重要補充。
高斯計算的𠔌神星軌跡高斯總結了復數的應用,並且嚴格證明了每一個n階的代數方程必有n個復數解。在他的第一本著名的著作《數論》中,作出了二次互反律的證明,成為數論繼續發展的重要基礎。在這部著作的第一章,導出了三角形全等定理的概念。
高斯在他的建立在最小二乘法基礎上的測量平差理論的幫助下,結算出天體的運行軌跡。並用這種方法,發現了𠔌神星的運行軌跡。𠔌神星於1801年由意大利天文學家皮亞齊發現,但他因病耽誤了觀測,失去了這顆小行星的軌跡。皮亞齊以希臘神話中“豐收女神”(Ceres)來命名它,即𠔌神星(Planetoiden Ceres),並將以前觀測的位置發表出來,希望全球的天文學家一起尋找。高斯通過以前的三次觀測數據,計算出了𠔌神星的運行軌跡。奧地利天文學家 Heinrich Olbers在高斯的計算出的軌道上成功發現了這顆小行星。從此高斯名揚天下。高斯將這種方法著述在著作《天體運動論》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium )中。
高斯設計的漢諾威大地測量的三角網為了獲知任意一年中復活節的日期,高斯推導了復活節日期的計算公式。
在1818年至1826年之間高斯主導了漢諾威公國的大地測量工作。通過他發明的以最小二乘法為基礎的測量平差的方法和求解綫性方程組的方法,顯著的提高了測量的精度。出於對實際應用的興趣,他發明了日光反射儀,可以將光束反射至大約450公裏外的地方。高斯後來不止一次地為原先的設計作出改進,試製成功被廣泛應用於大地測量的鏡式六分儀。
高斯親自參加野外測量工作。他白天觀測,夜晚計算。五六年間,經他親自計算過的大地測量數據,超過100萬次。當高斯領導的三角測量外場觀測已走上正軌後,高斯就把主要精力轉移到處理觀測成果的計算上來,並寫出了近20篇對現代大地測量學具有重大意義的論文。在這些論文中,推導了由橢圓面嚮圓球面投影時的公式,並作出了詳細證明,這套理論在今天仍有應用價值。漢諾威公國的大地測量工作直到1848年纔結束,這項大地測量史上的巨大工程,如果沒有高斯在理論上的仔細推敲,在觀測上力圖合理精確,在數據處理上盡量周密細緻的出色表現,就不能完成。在當時條件下布設這樣大規模的大地控製網,精確地確定2578個三角點的大地坐標,可以說是一項了不起的成就。
為了用橢圓在球面上的正形投影理論以解决大地測量中出現的問題,在這段時間內高斯亦從事了麯面和投影的理論,並成為了微分幾何的重要理論基礎。他獨立地提出了不能證明歐氏幾何的平行公設具有‘物理的’必然性,至少不能用人類的理智給出這種證明。但他的非歐幾何理論並未發表。也許他是出於對同時代的人不能理解這種超常理論的擔憂。相對論證明了宇宙空間實際上是非歐幾何的空間。高斯的思想被近100年後的物理學接受了。
高斯試圖在漢諾威公國的大地測量中通過測量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三個山頭所構成的三角形的內角和,以驗證非歐幾何的正確性,但未成功。高斯的朋友鮑耶的兒子雅諾斯在1823年證明了非歐幾何的存在,高斯對他勇於探索的精神表示了贊揚。1840年,羅巴切夫斯基又用德文寫了《平行綫理論的幾何研究》一文。這篇論文發表後,引起了高斯的註意,他非常重視這一論證,積極建議哥廷根大學聘請羅巴切夫斯基為通信院士。為了能直接閱讀他的著作,從這一年開始,63歲的高斯開始學習俄語,並最終掌握了這門外語。最終高斯成為和微分幾何的始祖(高斯,雅諾斯、羅巴切夫斯基)中最重要的一人。
出於對實際應用的興趣,高斯發明了日光反射儀。日光反射儀可以將光束反射至大約450公裏外的地方。高斯後來不止一次地為原先的設計作出改進,試製成功了後來被廣泛應用於大地測量的鏡式六分儀。
19世紀30年代,高斯發明了磁強計,辭去了天文臺的工作,而轉嚮物理研究。他與韋伯(1804-1891)在電磁學的領域共同工作。他比韋伯年長27歲,以亦師亦友的身份進行合作。1833年,通過受電磁影響的羅盤指針,他嚮韋伯發送了電報。這不僅僅是從韋伯的實驗室與天文臺之間的第一個電話電報係統,也是世界首創。儘管綫路纔8千米長。1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置,並於次年得到美國科學家的證實。
高斯和韋伯共同設計的電報高斯研究數個領域,但衹將他思想中成熟的理論發表。他經常提醒他的同事,該同事的結論已經被自己很早的證高斯明,衹是因為基礎理論的不完備性而沒有發表。批評者說他這樣是因為極愛出風頭。實際上高斯衹是一部瘋狂的打字機,將他的結果都記錄起來。在他死後,有20部這樣的筆記被發現,纔證明高斯的宣稱是事實。一般認為,即使這20部筆記,也不是高斯全部的筆記。下薩剋森州和哥廷根大學圖書館已經將高斯的全部著作數字化並置於互聯網上。
高斯的肖像已經被印在從1989年至2001年流通的10德國馬剋的紙幣上。
著作
1799年:關於代數基本定理的博士論文 (Doktorarbeit uber den Fundamentalsatz der Algebra)
1801年:算術研究 (Disquisitiones Arithmeticae)
1809年:天體運動論 (Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)
1827年:麯面的一般研究 (Disquisitiones generales circa superficies curvas)
1843-1844年:高等大地測量學理論(上) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 1)
1846-1847年:高等大地測量學理論(下) (Untersuchungen uber Gegenstande der Hoheren Geodasie, Teil 2)
【物理單位】
高斯簡稱高(Gs,G),非國際通用的磁感應強度或磁通量的單位。為紀念德國物理學家和數學家高斯而命名。
一段導綫,若放在磁感應強度均勻的磁場中,方向與磁感應強度方向垂直的長直導在綫通有1電磁係單位的穩恆電流時,在每釐米長度的導綫受到電磁力為1達因,則該磁感應強度就定義為1高斯。
高斯是很小的單位,10000高斯等於1特斯拉(T)。
高斯是常見非法定計量單位,特[斯拉]是法定計量單位.