例如,(C,Y,R) 是一個字母的序列:順序是 C 第一,Y 第二,R 第三。序列可以是有限的(就像前面這個例子),也可以是無限的,就像所有正偶數的序列 (2,4,6,...)。有限序列包含空序列 ( ),它沒有元素。序列中的元素也稱為項,項的個數(可能是無限的)稱為序列的長度。
序列寫作 (a1,a2, ...)。簡單起見,也可以用符號 (an)。
一個相對正式的定義:其項屬於集合 S 的有限序列是一個從 {1,2,...,n} 到 S 的函數,這裏 n≥0。屬於 S 的無限序列是從 {1,2,...}(自然數集合)到 S 的函數。
有限序列也稱作 n 元組。一個從所有整數到到集合的函數有時也稱作雙無限序列,這裏將以負整數索引的序列認為是另一個以正整數索引的序列。
序列的形式和性質
一個給定序列的子序列是從給定序列中去除一些元素,而不改變其他元素之間相對位置而得到的。若序列的項屬於一個偏序集,則單調遞增序列就是其中每個項都大於等於之前的項;若每個項都嚴格大於之前的項,這個序列就是嚴格單調遞增的。類似可定義單調遞減序列。單調序列是單調函數的一個特例。由整數組成的序列稱為整數列;由多項式組成的序列稱為多項式列。若 S 具有拓撲,那麽就可以討論 S 中的無限序列的收斂。請詳見極限。由數組成的序列稱為數列;由數列的部分和組成的序列稱為級數,例如: