|
|
水分通过植物体表(主要是叶子),以气体状态蒸发散失到体外的一种生理现象。按发生部位,可分气孔蒸腾、角质层蒸腾、周皮蒸腾。能促使根吸收水分和溶解在水中的无机盐,降低植物体内的温度。 |
|
蒸腾作用 是水分从活的植物体表面(主要是叶子)以水蒸汽状态散失到大气中的过程。与物理学的蒸发过程不同,蒸腾作用不仅受外界环境条件的影响,而且还受植物本身的调节和控制,因此它是一种复杂的生理过程。植物幼小时,暴露在空气中的全部表面都能蒸腾。
成长植物的蒸腾部位主要在叶片。叶片蒸腾有两种方式:一是通过角质层的蒸腾,叫做角质蒸腾;二是通过气孔的蒸腾,叫做气孔蒸腾,气孔蒸腾是植物蒸腾作用的最主要方式。蒸腾作用的生理意义:它是植物吸收和运输水分的主要动力,可加速无机盐向地上部分运输的速率,可降低植物体的温度,使叶子在强光下进行光合作用而不致受害。植物蒸腾丢失的水量是很大的。据估计1株玉米从出苗到收获需消耗四、五百斤水。自养的绿色植物在进行光合作用过程中,必须和周围环境发生气体交换。因此,植物体内的水分就不可避免地要顺着水势梯度丢失,这是植物适应陆地生活的必然结果。适当地抑制蒸腾作用,不仅可减少水分消耗,而且对植物生长也有利。在高湿度条件下,植物生长比较茂盛。蔬菜等作物生产中,采用喷灌可提高空气湿度,减少蒸腾,一般比土壤灌溉可增产。
生理意义
蒸腾作用的生理意义有下列三点:
1.蒸腾作用是植物对水分的吸收和运输的一个主要动力,特别是高大的植物,假如没有蒸腾作用,由蒸腾拉力引起的吸水过程便不能产生,植株较高部分也无法获得水分。
2.由于矿质盐类要溶于水中才能被植物吸收和在体内运转,既然蒸腾作用是对水分吸收和流动的动力,那么,矿物质也随水分的吸收和流动而被吸入和分布到植物体各部分中去。植物对有机物的吸收和有机物在体内转运也是如此。所以,蒸腾作用对吸收矿物质和有机物,以及这两类物质在植物体内运输都是有帮助的。
3.蒸腾作用能够降低叶片的温度。太阳光照射到叶片上时,大部分能量转变为热能,如果叶子没有降温的本领,叶温过高,叶片会被灼伤。而在蒸腾过程中,水变为水蒸气时需要吸收热能(1g水变成水蒸气需要能量,在20℃时是2444.9j,30℃时是2430.2j),因此,蒸腾能够降低叶片的温度。 |
|
蒸腾作用 是水分从活的植物体表面(主要是叶子)以水蒸汽状态散失到大气中的过程,是与物理学的蒸发过程不同,蒸腾作用不仅受外界环境条件的影响,而且还受植物本身的调节和控制,因此它是一种复杂的生理过程。植物幼小时,暴露在空气中的全部表面都能蒸腾。
成长植物的蒸腾部位主要在叶片。叶片蒸腾有两种方式:一是通过角质层的蒸腾,叫做角质蒸腾;二是通过气孔的蒸腾,叫做气孔蒸腾,气孔蒸腾是植物蒸腾作用的最主要方式。蒸腾作用的生理意义:它是植物吸收和运输水分的主要动力,可加速无机盐向地上部分运输的速率,可降低植物体的温度,使叶子在强光下进行光合作用而不致受害。植物蒸腾丢失的水量是很大的。据估计1株玉米从出苗到收获需消耗四、五百斤水。自养的绿色植物在进行光合作用过程中,必须和周围环境发生气体交换。因此,植物体内的水分就不可避免地要顺着水势梯度丢失,这是植物适应陆地生活的必然结果。适当地抑制蒸腾作用,不仅可减少水分消耗,而且对植物生长也有利。在高湿度条件下,植物生长比较茂盛。蔬菜等作物生产中,采用喷灌可提高空气湿度,减少蒸腾,比一般土壤灌溉可增产。
蒸腾作用的过程如下:土壤中的水分根毛→根内导管→茎内导管→叶内导管→气孔→大气 |
|
蒸腾作用的生理意义有下列三点:
1.蒸腾作用是植物对水分的吸收和运输的一个主要动力,特别是高大的植物,假如没有蒸腾作用,由蒸腾拉力引起的吸水过程便不能产生,植株较高部分也无法获得水分。
2.由于矿质盐类(无机盐)要溶于水中才能被植物吸收和在体内运转,既然蒸腾作用是对水分吸收和流动的动力,那么,矿物质也随水分的吸收和流动而被吸入和分布到植物体各部分中去。所以,蒸腾作用对这两类物质在植物体内运输都是有帮助的。
3.蒸腾作用能够降低叶片的温度。太阳光照射到叶片上时,大部分能量转变为热能,如果叶子没有降温的本领,叶温过高,叶片会被灼伤。而在蒸腾过程中,水变为水蒸气时需要吸收热能(1g水变成水蒸气需要能量,在20℃时是2444.9J,30℃时是2430.2J),因此,蒸腾能够降低叶片表面的温度。 |
|
(1) 光:光促进气孔的开启,蒸腾增加。
(2) 水分状况:足够的水分有利于气孔开放,过多的水分反而使气孔关闭。
(3) 温度:气孔开度一般随温度的升高而增大,但温度过高失水增大也可使气孔关闭。
(4) 风:微风有利于蒸腾,强风蒸腾降低。
(5)CO2 浓度: CO2 浓度低促使气孔张开,蒸腾增强。
蒸腾的指标:蒸腾强度(蒸腾速率),蒸腾效率,蒸腾系数。
降低蒸腾的途径: (1) 减少蒸腾面积; (2) 改善植物生态环境; (3) 应用抗蒸腾剂。
若过度蒸腾,植物易出现萎蔫现象。 |
|
zhengteng zuoyong
蒸腾作用
transpiration
陆生植物体内的水分以蒸气状态向大气散发(蒸发)的过程。它通过植物地上部的表皮,主要是其上的气孔(器)进行。组成气孔的保卫细胞响应植物体内外条件变化而运动,使气孔开闭,从而引起水蒸气扩散阻力的变化。因此蒸腾作用实质上是生理调节(气孔运动)下的物理过程(蒸发)。
部位 水分可以从植物体与空气接触的任何表面蒸发。藻类的水分可从整个表面蒸发。维管植物的叶表皮除气孔以外的表面被角质层覆盖。气孔与角质层对水蒸气的导性(或其倒数阻力)大小相同,水分散失的速率也大不相同。蒸腾作用可按其发生的部位分为气孔蒸腾、角质层蒸腾和周皮蒸腾。气孔在叶表皮上所占的相对面积 (1%左右)虽然很小,但单位叶面积上数目多、间隔小,所以在气孔开张时扩散阻力不大。气孔内侧的叶肉细胞表面透水性好,海绵组织的细胞排列松散,空隙多,表面积大,水分扩散的阻力更小,所以气孔蒸腾最为重要。角质层富含蜡质,对水分通过的阻力极大;角质膜上有极性小孔,可容许水分通过。当水分多时或pH值高时,单位面积膜上极性小孔数目增多,膜的透性略为增高。周皮蒸腾是木本植物通过茎表面覆盖着的周皮层进行的蒸腾。周皮层已木栓化,透水性很差;只有不多的皮孔和裂隙可允许水蒸气通过。
动力和阻力 蒸腾作用中水分自叶面散失的直接推动力,是叶细胞(主要是叶肉细胞)表面水分的蒸发和水蒸气向大气的扩散。因为扩散是双向的,所以净的推动力是叶细胞表面与大气间蒸气压(分别为□□与□□)或水蒸气浓度(分别为□□与□□)之差。一般叶水势变化对蒸气压影响不大,□□总是接近水在叶温(□□)下的饱和蒸气压。而□□则是大气温度(□□)下的饱和蒸气压乘以相对湿度(图1水的饱和蒸气压对温度的依赖关系)。 当叶温和气温相等时,□□-□□就是饱和差。由于饱和蒸气压是温度的指数函数,相对湿度相同,高温下的饱和差比低温下大。
与电学上电阻线路类比,可以把蒸腾速率表示为水蒸气浓度差被阻力除所得的商:
□ (1)其中□ 为蒸腾速率,□为水蒸气密度,□为阻力。扩散阻力是由扩散途径中各个部分的阻力组合而成的。与电学上相似,几个阻力串联时的总阻力为各阻力之和,而并联时的总阻力则为各阻力倒数之和的倒数。水蒸气可以自叶肉细胞表面经细胞间隙和气孔向外扩散,其阻力分别为□□与□□;也可以通过角质层向外扩散,其阻力为□。因为气孔阻力与角质层阻力是并联的,所以叶面总阻力为:
□ (2)以图表示,如图2水分扩散阻力示图(单位为scm□)。角质层透水性差,□,□通常可以忽略。气孔阻力(□□)大小随气孔开闭而变,开放时很小,关闭时很大。总的阻力则是:
□ (3)其中□为总阻力,□□为叶面上空气中的阻力。当气孔开张时,□□与□相比很小,方程(3)可简化为:
□ =□□+□□=□□+□□+□□ (4)
如果考虑水分通过整个土壤-植物-大气系统的运动,则总阻力还应包括茎、根、根际土壤等几个部分的阻力(见植物水分生理)。
影响蒸腾速率的因子 各种环境因子分别影响蒸腾作用的动力和阻力。有些因子对两者都有影响。据J.L.蒙蒂思对蒸腾作用的分析,蒸腾速率(E)可用下式代表:
□ (5)式中□为饱和蒸气压-温度曲线的斜率,□为总能通量,□为水蒸气密度,□□为定压气体比热,□□(□)为温度□时的饱和蒸气压,□□为边界层阻力,□□为干湿球温度计常数的表观值,λ为水的潜热。□□=□(□□+ □□/ □□),其中□为干湿球温 |
|
- n.: Transpiration
|
|
|