应用数学 : 数学与应用数学 > 突变理论
目录
突变理论
  是20世纪70年代发展起来的一个新的数学分支。
突变理论的产生
  许多年来,自然界许多事物的连续的、渐变的、平滑的运动变化过程,都可以用微积分的方法给以圆满解决。例如,地球绕着太阳旋转,有规律地周而复始地连续不断进行,使人能及其精确地预测未来的运动状态,这就需要运用经典的微积分来描述。
  但是,自然界和社会现象中,还有许多突变和飞跃的过程,飞越造成的不连续性把系统的行为空间变成不可微的,微积分就无法解决。例如,水突然沸腾,冰突然融化,火山爆发,某地突然地震,房屋突然倒塌,病人突然死亡……。
  这种由渐变、量变发展为突变、质变的过程,就是突变现象,微积分是不能描述的。以前科学家在研究这类突变现象时遇到了各式各样的困难,其中主要困难就是缺乏恰当的数学工具来提供描述它们的数学模型。那么,有没有可能建立一种关于突变现象的一般性数学理论来描述各种飞跃和不连续过程呢?这迫使数学家进一步研究描述突变理论的飞跃过程,研究不连续性现象的数学理论。
  1972年法国数学家雷内·托姆在《结构稳定性和形态发生学》一书中,明确地阐明了突变理论,宣告了突变理论的诞生。
突变理论的内容
  突变理论主要以拓扑学为工具,以结构稳定性理论为基础,提出了一条新的判别突变、飞跃的原则:在严格控制条件下,如果质变中经历的中间过渡态是稳定的,那么它就是一个渐变过程。
  比如拆一堵墙,如果从上面开始一块块地把砖头拆下来,整个过程就是结构稳定的渐变过程。如果从底脚开始拆墙,拆到一定程度,就会破坏墙的结构稳定性,墙就会哗啦一声,倒塌下来。这种结构不稳定性就是突变、飞跃过程。又如社会变革,从封建社会过渡到资本主义社会,法国大革命采用暴力来实现,而日本的明治维新就是采用一系列改革,以渐变方式来实现。
  对于这种结构的稳定与不稳定现象,突变理论用势函数的洼存在表示稳定,用洼取消表示不稳定,并有自己的一套运算方法。例如,一个小球在洼底部时是稳定的,如果把它放在突起顶端时是不稳定的,小球就会从顶端处,不稳定滚下去,往新洼地过渡,事物就发生突变;当小球在新洼地底处,又开始新的稳定,所以势函数的洼存在与消失是判断事物的稳定性与不稳定性、渐变与突变过程的根据。
  托姆的突变理论,就是用数学工具描述系统状态的飞跃,给出系统处于稳定态的参数区域,参数变化时,系统状态也随着变化,当参数通过某些特定位置时,状态就会发生突变。
  突变理论提出一系列数学模型,用以解是自然界和社会现象中所发生的不连续的变化过程,描述各种现象为何从形态的一种形式突然地飞跃到根本不同的另一种形式。如岩石的破裂,桥梁的断裂,细胞的分裂,胚胎的变异,市场的破坏以及社会结构的激变……。
  按照突变理论,自然界和社会现象中的大量的不连续事件,可以由某些特定的几何形状来表示。托姆指出,发生在三维空间和一维空间的四个因子控制下的突变,有七种突变类型:折迭突变、尖顶突变、燕尾突变、蝴蝶突变、双曲脐突变、椭圆脐形突变以及抛物脐形突变。
  例如,用大拇指和中指夹持一段有弹性的钢丝,使其向上弯曲,然后再用力压钢丝使其变形,当达到一定程度时,钢丝会突然向下弯曲,并失去弹性。这就是生活中常见的一种突变现象,它有两个稳定状态:上弯和下弯,状态由两个参数决定,一个是手指夹持的力(水平方向),一个是钢丝的压力(垂直方向),可用尖顶突变来描述。
  尖顶突变和蝴蝶突变是几种质态之间能够进行可逆转的模型。自然界还有些过程是不可逆的,比如死亡是一种突变,活人可以变成死人,反过来却不行。这一类过程可以用折迭突变、燕尾突变等时函数最高奇次的模型来描述。所以,突变理论是用形象而精确的得数学模型来描述质量互变过程。
  英国数学家奇曼教授称突变理论是“数学界的一项智力革命——微积分后最重要的发现”。他还组成一个研究团体,悉心研究,扩展应用。短短几年,论文已有四百多篇,可成为盛极一时,托姆为此成就而荣获当前国际数学界的最高奖——菲尔兹奖。
突变理论的应用
  突变理论在自然科学的应用是相当广泛的。在物理学研究了相变、分叉、混沌与突变的关系,提出了动态系统、非线性力学系统的突变模型,解释了物理过程的可重复性是结构稳定性的表现。在化学中,用蝴蝶突变描述氢氧化物的水溶液,用尖顶突变描述水的液、气、固的变化等。在生态学中研究了物群的消长与生灭过程,提出了根治蝗虫的模型与方法。在工程技术中,研究了弹性结构的稳定性,通过桥梁过载导致毁坏的实际过程,提出最优结构设计……。
  突变理论在社会现象的一个用归纳为某种量的突变问题,人们施加控制因素影响社会状态是有一定条件的,只有在控制因素达到临界点之前,状态才是可以控制的。一旦发生根本性的质变,它就表现为控制因素所无法控制的突变过程。还可以用突变理论对社会进行高层次的有效控制,为此就需要研究事物状态与控制因素之间的相互关系,以及稳定区域、非稳定区域、临界曲线的分布特点,还要研究突变的方向与幅度。
百科大全
  tubian lilun
  突变理论
  catastrophe theory
  20世纪70年代发展起来的一个新的数学学科。一种自然现象或一个技术过程,在发展变化过程中常常会从一个状态跳跃式地变到另一个状态,或者说经过一段时间缓慢的连续的变化之后,在一定的外界条件下,会产生一种不连续的变化,这就是所谓的突变现象。这类突变现象在大自然里以及在技术过程中都是普遍存在的。例如,一定质量的气体在一定的温度和压力之下会变成液体,天气的突然变化会产生暴风雨,地壳的剧烈运动会引起地震,桥梁的扭曲会导致断裂,容器里的几种物质在一定的外界条件下会发生化学反应,胚胎的发育,等等,这些现象都是突变现象。以前科学家们在研究这类突变现象时遇到了各式各样的困难,其中主要困难之一就是缺乏恰当的数学工具来提供描述它们的数学模型。1969年法国数学家R.托姆在他的题为《生物学中的拓扑模型》一文中,首次在奇点分类的基础上提出了一个描述突变现象的数学模型。稍后,他在著名的《结构稳定与形态发生》一书中又系统地阐述了他的思想,这就是现在人们所称的突变理论
  泽曼机是E.C.泽曼为阐述突变理论而构造的一个力学例子。□是一个半径为1的圆盘,它可以围绕□□平面的原点□自由转动。□是□□平面上的一个固定点,□□的长为3,□是圆盘上的一个固定点,取两条长度为1的弹性带子,把其中的一条的一端固定在点□,另一端固定在圆盘上的点□处;另一条弹性带子的一端固定在□处,另一端□在平面上自由移动。当点□在平面上连续变动时,只要□□的长度大于1,那么在弹性力的作用下,一般说来,圆盘是跟着□点的移动而连续地转动。在实验中发现,当□移动到某些点时,圆盘会从一个状态跳跃到另一个状态,发生了不连续的变化即突变。通过实验就可以看到这种突变点构成一条如图1 泽曼机所示的尖点状的曲线。对这样一个力学系统的运动,取直线□□为□轴,首先找出刻画圆盘状态的参数,可以用□□与□□的夹角□□来刻画圆盘的状态并称□为状态参数,或称内参数。点□的运动控制着圆盘的运动,所以点□的坐标(□,□)就称为控制参数或外参数。由胡克定律可知,这个力学系统有个势函数。当两条弹性带子的长度分别为□□、□□时,它们的总势能为□=(□□-1)□+(□□-1)□,式中□□=□□,□□=□□,将
  □代入□,□可以看出□是□、□、□的函数。由极小势能原理可知,当点□□的坐标为(□0,□0)时,圆盘状态□□0应使□(□0,□0,□0)为势函数□(□,□,□)的极小值。也就是说,这个力学系统的状态(□□,□,□)应满足方程式□。在三维空间(□,□,□)□□□□□中, 方程式□确定一曲面,记作М□并称它为状态曲面或突变流形。它上面的点代表这个力学系统的一个状态。从奇点理论研究的结果知道,可以选取适当的坐标 (□,□,□)□使得函数□在新坐标系中有很简单的分析表达式:
  □而状态曲面М□由方程
  □所决定。这个曲面图形如图2 尖点型突变所示。几何上曲面М□是这样描述力学系统运动的:为了使图看起来清晰,把□,□平面沿□轴向下平移一个距离,□□表示М□到(□,□)平面的垂直投影,曲面М□的两条折叠线在□□下的像是一条尖点曲线□,给定一点□0(□0,□0),圆盘的状态□0应该使
  □,即 (□0,□0,□0)是曲面М□上的一点 □0,亦即通过点(□0,□□)平行于□轴的直线与М□的交点就是□。当控制参数□=(□,□)在平面上沿一条曲线从□0连续地变到□□,□□时,相应的代表系统状态的点□就从□□连续地沿着曲面上一条曲线变到□□,□□。
包含词
突变理论学