|
|
是液体和气体的总称。
流体是由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状和具有流动性。流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型。
固体和流体具有以下不同的特征:在静止状态下固体的作用面上能够同时承受剪切应力和法向应力。而流体只有在运动状态下才能够同时有法向应力和切向应力的作用,静止状态下其作用面上仅能够承受法向应力,这一应力是压缩应力即静压强。固体在力的作用下发生变形,在弹性极限内变形和作用力之间服从虎克定律,即固体的变形量和作用力的大小成正比。而流体则是角变形速度和剪切应力有关,层流和紊流状态它们之间的关系有所不同,在层流状态下,二者之间服从牛顿内摩擦定律。当作用力停止作用,固体可以恢复原来的形状,流体只能够停止变形,而不能返回原来的位置。固体有一定的形状,流体由于其变形所需的剪切力非常小,所以很容易使自身的形状适应容器的形状,在一定的条件下并可以维持下来。 |
|
与液体相比气体更容易变形,因为气体分子比液体分子稀疏得多。在一定条件下,气体和液体的分子大小并无明显差异,但气体所占的体积是同质量液体的103倍。所以气体的分子距与液体相比要大得多,分子间的引力非常微小,分子可以自由运动,极易变形,能够充满所能到达的全部空间。液体的分子距很小,分子间的引力较大,分子间相互制约,分子可以作无一定周期和频率的振动,在其他分子间移动,但不能像气体分子那样自由移动,因此,液体的流动性不如气体。在一定条件下,一定质量的液体有一定的体积,并取容器的形状,但不能像气体那样充满所能达到的全部空间。液体和气体的交界面称为自由液面。
从阿基米德到现在的二千多年,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。
今后,人们一方面将根据工程技术方面的需要进行流体力学应用性的研究,另一方面将更深入地开展基础研究以探求流体的复杂流动规律和机理。后一方面主要包括:通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。 |
|
流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。
对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。
直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。
17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。
之后,法国皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。
欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。这种理论当然阐明不了流体中粘性的效应。
19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。
普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。
20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。
机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。
以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。
这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。
20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。近年来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。
从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。 |
|
流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。等离子体在磁场作用下有特殊的运动规律。研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。
风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学 (其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。
生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动和植物中营养液的输送。此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。
因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。
描述流体的两种方法——拉格朗日方法和欧拉方法
拉格朗日方法,着眼于流体质点。设法描述出每个流体质点自始至终的运动过程,即它们的位置随时间变化的规律。如果知道了所有流体质点的运动规律,那么整个流体的运动状况也就知道了。
欧拉方法,其着眼点不是流体质点,而是空间点,设法在空间中的每一点上描述出流体运动随时间的变化状况。
流体力学的基本假设
流体力学有一些基本假设,基本假设以方程的形式表示。例如,在三维的不可压缩流体中,质量守恒的假设的方程如下:在任意封闭曲面(例如球体)中,由曲面进入封闭曲面内的质量速率,需和由曲面离开封闭曲面内的质量速率相等。(换句话说,曲面内的质量为定值,曲面外的质量也是定值)以上方程可以用曲面上的积分式表示。
流体力学假设所有流体满足以下的假设:
·质量守恒
·动量守恒
·连续体假设
在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。 |
|
流体
Fluids
流体(fluids)
流体是一种一直没有固定形状的物质。通常将
分子能够任意地相互流动、且流动时不形成断面的
物质聚集体列为流体一类。流体可再分为气体、蒸气
和液体,它们的分子都是紧密相连地结合着,并可按
其不同的热力学和力学性质来区别。它们都是易于
区别的流体,其中有些主要具有牛顿流体性质,而其
余的主要具有非牛顿流体性质。参阅“非牛顿流体”
(non一Newtonian fluid)条。
物质的固态聚集体不论是连续的还是分散为粉
注:l泊=10一‘帕·秒。
1磅=o·373千克。
1英里~L 609千米。
1英尺=30·48厘米。、
1英寸一2.45厘米。、
1英国热量单位~1055.79焦耳。
末的,通常都可以从分子结构的角度与流体相区别,
在固体中显然有长期有序和长程有序结构。
有些物质如半固体看起来能作连续不断的流
动,但它们还具有一些固体的属性,例如有形成任意
固定形状的能力。在室温下的奶油就是具有这种双
重性质的物质的一个很好的例子。
同样,某些流体具有弹性,称为粘弹性流体。这
种物质不易分类,对其性能的了解尚不够深。
气体低密度的气体完全遵从麦克斯韦理论。
在麦克斯韦理论中,分子被看作处于相对运动的、刚
性的、无相互作用的小球,如图1所示。
从不同平面上小球间动量交换出发导出的气伪
粘滞度产的理论表达式为
2甲丽厅
p一舜兀-一了一,
速度纵断面
洲_卜d
式中m是一个小球的质量,k是玻耳兹曼常量,T是
绝对温度,d是小球直径。
式(l)的一个很重要的推论是,低密度气体的榨
滞度与绝对温度的平方根成正比,而与压力无关。这
与液体的性质完全不同。
当接近凝聚状态时,粘滞度开始大大不同于式
(1)所预示的数据。温度指数由0.5增加到O,6与
1.0之间,气体粘滞度不再与压力无关。随着温度和
压力而变化的粘滞度的一般性质如图2所示。气体
混合物枯滞度通常不能简单地与各组分的粘滞度及
其克分子数相联系。参阅“气体”(gas)条。
缝、一",﹂/
裂︸厂卜找侧一
的一、、l二︸
象、户:、
想/|
图1
液体
气体的麦克斯韦分子系统
两相区
在液体表面上的
分子合力
浓的气体
逐降的压力
一一.
气体
.一二,.?
很体
.
.
l木。
八侧提探)切。一
低密度的气体
109(温度)
图2变化温度和压力对流体粘度的影响
图4(a)在气一液界面上一个液体分子上的力 |
|
- n.: liquid, water, fluid
- adj.: a fluid substance, fluid substance
|
|
- n. fluide
|
|
液 |
|
数学家 | 曲线 | 数学 | 振动 | 术语 | 发动机 | 工程 | 压缩机 | 物理 | 力学 | 流体力学 | 百科辞典 | 软件 | 传热学 | 计算流体力学 | 土木 | 机械工程 | 有限元 | 方程 | 伯努利 | 百科大全 | 地理 | 定义 | 数理化 | 科学 | 粘性 | 液压 | 粘度换算 | 更多结果... |
|
|
|