数学与应用数学 > 和差化积
目录
正弦、余弦的和差化积
  指高中数学三角函数部分的一组恒等式
  sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]
  sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
  cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
  cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
  以上四组公式可以由积化和差公式推导得到
  证明过程
  sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
  因为
  sin(α+β)=sin αcos β+cos αsin β,
  sin(α-β)=sin αcos β-cos αsin β,
  将以上两式的左右两边分别相加,得
  sin(α+β)+sin(α-β)=2sin αcos β,
  设 α+β=θ,α-β=φ
  那么
  α=(θ+φ)/2, β=(θ-φ)/2
  把α,β的值代入,即得
  sin θ+sin φ=2sin(θ+φ)/2 cos(θ-φ)/2
正切的和差化积
  tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
  cotα±cotβ=sin(β±α)/(sinα·sinβ)
  tanα+cotβ=cos(α-β)/(cosα·sinβ)
  tanα-cotβ=-cos(α+β)/(cosα·sinβ)
  证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
  =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
  =sin(α±β)/(cosα·cosβ)=右边
  ∴等式成立
注意事项
  在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次
  口诀
  正加正,正在前,余加余,余并肩
  正减正,余在前,余减余,负正弦
  反之亦然
  生动的口诀:(和差化积
  帅+帅=帅哥
  帅-帅=哥帅
  咕+咕=咕咕
  哥-哥=负嫂嫂
  反之亦然
英文解释
  1. :  Hechahuaji
包含词
和差化积公式和差化积公式推导