body : discipline of physics > HR diagram
Contents
No. 1
  Stellar spectral types and luminosity diagram. By the Danish astronomer Hecipulong (1907) and the American astronomer Russell (1913) independently created. To the star luminosity and color as the vertical axis and horizontal, respectively, were found in the majority of stars are arranged from top left to bottom right in a continuous belt. Used to study stellar evolution. 
Translated by Google
No. 2
  1911年丹麦天文学家赫茨普龙,1913年美国天文学家罗素各自独立绘出恒星的光度—温度图,发现大多数恒星分布在图中左上方至右下方的一条狭长带内,从高温到低温的恒星形成一个明显的序列,称为“主星序”。为了纪念两位科学家作出的贡献,人们称这种图为赫—罗图(hr-diagram)。
  赫茨普龙-罗素图(赫罗图)是表示恒星温度或颜色与光度之间关系的图。该图显示出恒星的光度和表面温度随时间变化的情形,炽热明亮的蓝巨星位于左上方,而比较冷且暗的红矮星分布在图的右下角。横坐标是恒星的光谱型,根据恒星的温度或颜色可把恒星分成以字母o、b、a、f、g、k、m表示的七种类型。o型是热的蓝矮星,m型是较冷的红矮星。这是恒星的温度序列。纵坐标是绝对星等,即恒星光度。大多数恒星,包括太阳都在从左上至右下的一条对角线上,这条对角线被称为主星序,主星序上的恒星称为主序星,都处于一生中的氢燃烧阶段。当恒星核的氢烧完后,它们就离开主星序,开始氦燃烧而成为红巨星。最终红巨星坍缩,温度上升,成为白矮星。少数集中在右边中部组成巨星序,一些光度特别大的超巨星分布在图的上方。那些温度高、光度弱的白矮星集中在左下方一个较密集的区域。赫罗图对研究恒星的演化有重要作用。
  赫罗图与星球体积的大小关系
  物理学家在研究热辐射光谱的时候,发现了在一个单位面积上,亮度与温度之间的关系。温度越高亮度越亮。所以在赫罗图上,我们也可以把相同表面积的星球,出现的位置用连线标示出来。我们可以看到,在图的右上方,低温且高亮度,所以是体积很大的星球。越往左下方高温且低亮度,所以体积越来越小。因此,一旦我们能够决定一个星球的光谱类型和绝对星等,我们就能估计它的体积大小。
百科大全
  he-luo tu
  赫罗图
  HR diagram
  恒星光谱型和光度的关系图,是丹麦天文学家赫茨普龙和美国天文学家H.N.罗素创制的。赫茨普龙在1905年和1907年的论文中指出,一般蓝星是亮的,而红星却有亮、暗两种;他把亮星称为巨星,把暗星称为矮星。1911年他测定了几个银河星团(如昴星团、毕星团)中的恒星的光度和颜色,并将这二者作为纵坐标和横坐标。结果表明,这些星点大都落在一条连续带上,其余的星(巨星)则形成小群。1913年H.N.罗素研究了恒星的光度和光谱,并画出一系列表明恒星光度和光谱型之间的关系图(图11913年H.N.罗素绘制的绝对星等-光谱型图)。经过对比,发现颜色等价于光谱型或表面温度。他们两人的图所表示的是同一回事,因此,后来将这类光度-颜色(光谱型或表面温度)图称为赫茨普龙-罗素图,简称赫罗图
  用宽波段□□□测光系统测定暗星的颜色,比用光谱方法容易得多,所以后来逐渐用色指数代替光谱型作为赫罗图的横坐标。色指数可转换成表面温度;观测得到的视星等,经过距离改正后成为绝对星等(见星等),可再转换为光度。有了星的表面温度和光度,理论工作者便可以计算恒星的内部结构,也就是建立所谓恒星模型。随着时间的推移,恒星的内部结构逐渐演变,并在它的光度和表面温度(简称温度)上表现出来,这样,恒星在赫罗图上的位置便沿一定路径移动,描出“演化程”。因此,赫罗图不仅能给各类型恒星以特定的位置,而且能显示出它们各自的演化程,成为研究恒星必不可少的重要手段之一。
  赫罗图中的恒星不是平均分布,而是形成一定的序列的,因为光度和表面温度之间存在着内在的关系:如果压力、不透明度和产能率只是温度、密度和化学成分的函数,那么恒星的结构由它的质量和化学成分决定;如果化学成分给定,则每一恒星质量便对应着一定的光度和温度值。因而只要在某一质量范围内存在着光度和温度的关系,在赫罗图上就会出现相应的序列。同样质量范围内的恒星,在赫罗图上出现在不同的序列,必然是由化学成分不同引起的;而化学成分的不同可以是原始化学成分的不同,也可以是恒星处在不同的演化阶段。因此,赫罗图中的一些序列,可以用来研究恒星的形成和演化。
  图2亮于8.5照相视星等的 6,700颗恒星的赫罗图是太阳附近,6,700颗恒星的赫罗图。图中有两个密集序列,一个从左上向右下,称为主星序,也称矮星序;另一个是相当密集的一群星,接近右上角,差不多呈水平走向,称为巨星序。此外,还有不少星分散在图的上部,称为超巨星序。主星序下面是亚矮星序。图的底部有一特殊分支,称为白矮星序。巨星序和矮星序并不相接,中间留有相当明显的空隙,称为赫氏空区,只有为数很少的恒星落在空区以内。图2亮于8.5照相视星等的6,700颗恒星的赫罗图中的图形受到不少测量误差的影响。首先,恒星沿着若干垂直线密集并不是真实的物理图像,只是恒星光谱分类不连续的结果。实际上,光谱判据连续地变化,所以两大序列的分布应是很匀滑的。其次,恒星的距离也有颇大的不确定性,根据这种距离把视星等转换为绝对星等也会有一定误差。再者,暗星的视星等精度不够,而且确定一颗星的光谱型也并非易事。这些误差加在一起,就产生了主星序两个坐标方向的弥散。值得注意的是,图上画的是绝对星等和光谱型。哈佛光谱型星表HD所载恒星的视亮度有其限度。因此,这幅图能够充分反映在很远的距离仍能看见的真正的亮星,而不能充分反映在较近的距离还看不见的暗星。恒星的质量差别不大,大多数恒星的质量在太阳质量0.1~10倍范围内。恒星的化学成分的差别也不大,按质量计,大致氢占71%
Related Phrases
astronomicalMain-sequence starsbight
Containing Phrases
genuflect HR diagramHr diagram ShangcongzuoshangStar evolution of HR diagram