|
|
生长素
一种植物激素。即β吲哚乙酸”。在根、茎等尖端产生,幼叶、花芽、幼嫩果实中也有。只能从植物体上端向下端运输传导。可促进芽和茎的生长、生根及果实的发育。一般低浓度促进生长,高浓度则抑制生长甚至会杀死植物。 |
|
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称iaa,国际通用,是吲哚乙酸(iaa)。4-氯-iaa、5-羟-iaa、萘乙酸(naa)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对?草胚芽鞘向光性进行了研究。1928年温特首次分离出这种引起胚芽鞘弯曲的化学信使物质,命名为生长素。1934年,凯格等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。
植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。
生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
近年来提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上atp(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质ph值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。
施用吲哚乙酸后导致特定信使核糖核酸(mrna)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞的生长得以进行。
生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长,对细胞分裂没有影响。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。
植物生长素生理作用的两重性:
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10e-10mol/l,芽的最适浓度约为10e-8mol/l,茎的最浓度约为10e-5mol/l。在生产上常常用生长素的类似物(如萘乙酸、2,4-d等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形的原因。但也不是所有的植物都具有强烈的顶端优势,有些灌木类植物顶芽发育了一段时间后就开始退化,甚至萎缩,失去原有的顶端优势,所以灌木的树形是不成宝塔形的。由于高浓度的生长素具有抑制植物生长的作用,所以生产上也可用高浓度的生长素的类似物作除草剂,特别是对双子叶杂草很有效。
生长素类似物:2,4-d.因为生长素在植物体内存在量很少,为了调控植物生长,人们发现了生长素类似物,它们具有和生长素类似的效果而且可以进行量产,现已广泛运用到农业生产中。
地球引力对生长素分布的影响:
茎的背地生长和根的向地生长是由地球的引力引起的,原因是地球引力导致生长素分布的不均匀,在茎的近地侧分布多,背地侧分布少。由于茎的生长素最适浓度很高,茎的近地侧生长素多了一些对其有促进作用,所以近地侧生长快于背地侧,保持茎的向上生长;对根而言,由于根的生长素最适浓度很低,近地侧多了一些反而对根细胞的生长具有抑制作用,所以近地侧生长就比背地侧生长慢,保持根的向地性生长。若没有引力,根就不一定往下长了。
在失重状态对植物生长的影响:
根的向地生长和茎的背地生长是要有地球引力诱导的,是由于在地球引力的诱导下导致生长素分布不均匀造成的。在太空失重状态下,由于失去了重力作用,所以茎的生长也就失去了背地性,根也失去了向地生长的特性。但茎生长的顶端优势仍然是存在的,生长素的极性运输不受重力影响。
生长素的发现:
生长素是最早发现的植物激素。
1880年
英国的达尔文在用金丝雀薏草研究植物的向光性时发现,对胚芽鞘单向照光,会引起胚芽鞘的向光性弯曲。切去胚芽鞘的尖端或用不透明的锡箔小帽罩住胚芽鞘,用单侧光照射不会发生向光性弯曲。因此,达尔文认为胚芽鞘在单侧光下产生了一种向下移动的物质,引起胚芽鞘的背光面和向光面生长快慢不同,使胚芽鞘向光弯曲。
1928年
荷兰德温特把切下的燕麦胚芽鞘尖直与琼胶块上,经过一段时间后,移去胚芽鞘尖把这些琼脂小块放置在去尖的胚芽鞘的一边,结果有琼胶的一边生长较快,向相反方向弯曲。这个实验证实了胚芽鞘尖产生的一种物质扩散到琼胶中,再放置于胚芽鞘上时,可向胚芽鞘下部转移,并促进下部生长。后来went首次分离鞘尖产生的与生长有关的物质,并把这种物质命名为生长素。
1934年
荷兰的kogl等人从人尿中分离出一种化合物,加入到琼胶中,同样能诱导胚芽鞘弯曲,该化合物被证明是吲哚乙酸。随后kogl等人在植物组织中也找到了吲哚乙酸(indoleacetie acid简称iaa)。 |
|
如吲哚乙酸等 |
|
生长素
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对草的胚芽鞘向光性进行了研究。1928年温特证实了胚芽的尖端确实产生了某种物质,能够控制胚芽生长。1934年,凯格等人从一些植物中分离出了这种物质并命名它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。
植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。
生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
近年来提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。
施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞的生长得以进行。
生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长,对细胞分裂没有影响。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。
植物生长素生理作用的两重性:
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10E-10mol/L,芽的最适浓度约为10E-8mol/L,茎的最浓度约为10.3E-5mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形的原因。但也不是所有的植物都具有强烈的顶端优势,有些灌木类植物顶芽发育了一段时间后就开始退化,甚至萎缩,失去原有的顶端优势,所以灌木的树形是不成宝塔形的。由于高浓度的生长素具有抑制植物生长的作用,所以生产上也可用高浓度的生长素的类似物作除草剂,特别是对双子叶杂草很有效。
生长素类似物:2,4-D.因为生长素在植物体内存在量很少,为了调控植物生长,人们发现了生长素类似物,它们具有和生长素类似的效果而且可以进行量产,现已广泛运用到农业生产中。
植物生长素生理作用的两重性:
茎的背地生长和根的向地生长是由地球的引力引起的,原因是地球引力导致生长素分布的不均匀,在茎的近地侧分布多,背地侧分布少。由于茎的生长素最适浓度很高,茎的近地侧生长素多了一些对其有促进作用,所以近地侧生长快于背地侧,保持茎的向上生长;对根而言,由于根的生长素最适浓度很低,近地侧多了一些反而对根细胞的生长具有抑制作用,所以近地侧生长就比背地侧生长慢,保持根的向地性生长。若没有引力,根就不一定往下长了。
在失重状态对植物生长的影响:
根的向地生长和茎的背地生长是要有地球引力诱导的,是由于在地球引力的诱导下导致生长素分布不均匀造成的。在太空失重状态下,由于失去了重力作用,所以茎的生长也就失去了背地性,根也失去了向地生长的特性。但茎生长的顶端优势仍然是存在的,生长素的极性运输不受重力影响。
生长素的发现:
生长素是最早发现的植物激素。
1880年
英国的达尔文在用金丝雀薏草研究植物的向光性时发现,对胚芽鞘单向照光,会引起胚芽鞘的向光性弯曲。切去胚芽鞘的尖端或用不透明的锡箔小帽罩住胚芽鞘,用单侧光照射不会发生向光性弯曲。因此,达尔文认为胚芽鞘在单侧光下产生了一种向下移动的物质,引起胚芽鞘的背光面和向光面生长快慢不同,使胚芽鞘向光弯曲。
1928年
荷兰的温特把切下的燕麦胚芽鞘尖直立于琼胶块上,经过一段时间后,移去胚芽鞘尖把这些琼脂小块放置在去尖的胚芽鞘的一边,结果有琼胶的一边生长较快,向相反方向弯曲。这个实验证实了胚芽鞘尖产生的一种物质扩散到琼胶中,再放置于胚芽鞘上时,可向胚芽鞘下部转移,并促进下部生长。温特认为,这可能是一种和动物激素类似的物质,并命名为生长素。
1934年
荷兰的Kogl等人从人尿中分离出一种化合物,加入到琼胶中,同样能诱导胚芽鞘弯曲,该化合物被证明是吲哚乙酸。随后Kogl等人在植物组织中也找到了吲哚乙酸(indoleacetie acid简称IAA)。
小结:植物生长素的发现体现了科学研究的基本思路:A.提出问题,做出假设,设计试验,得出结论B.试验中体现了设计试验的单一变量原则;达尔文试验的单一变量是尖端的有无,温特试验的单一变量是琼脂是否与胚芽鞘尖端接触过。
生长素的代谢 Metabolism of IAA
生长素的分布和运输:
1、分布 (Distribution)
生长素在植物体内分布很广,几乎各部位都有,但不是均匀分布的,在某一时间,某一特定部位的含量是受几方面的因素影响的。大多集中在生长旺盛的部分(胚芽鞘、芽和根尖的分生组织、形成层、受精后的子房、幼嫩种子等),而趋向衰老的组织和器官中则甚少。
2、运输 (Transport)
极性运输 (Polar Transport)
生长素主要是在植物的顶端分生组织中合成的,然后被运输到植物体的各个部分。生长素在植物体内的运输是单方向的,只能从植物体形态学上端向形态学下端运输,其运输方式为主动运输(需要载体和ATP)
(二)生长素的代谢
1.生长素的生物合成
IAA的合成前体:色氨酸(tryptophan,Trp)。其侧链经过转氨、脱羧、氧化等反应。锌是色氨酸合成酶的组分,缺锌时导致由吲哚和丝氨酸结合而形成色氨酸的过程受阻,色氨酸含量下降,从而影响IAA的合成。生产上常引起苹果、梨等果树的小叶病。
2.生长素的结合和降解
植物体内生长素有两种形式:游离型:有生物活性,束缚型:活性低。
在体内,吲哚乙酸常常与天门冬氨酸结合成为吲哚乙酰天冬氨酸酯。还可与肌醇结合成吲哚乙醇肌醇。与葡萄糖结合成吲哚乙酰葡萄糖苷。与蛋白质结合成吲哚乙酸—蛋白质络合物。束缚型的生长素可能是生长素在细胞内的一种贮存形式,也是减少过剩生长素的解毒方式,在适当的条件下(pH9-10),它们可转变为游离型,经运输转移到作用部位起作用。
正在生长的种子中生长素的量也多,但完全成熟以后,大部分以束缚态贮藏起来。种子中以束缚态存在,萌发时转变为游离型。
生长素的降解(Degradation of IAA)
①酶氧化降解:吲哚乙酸氧化酶分解
植物体内生长素常处于合成与分解的动态平衡中。吲哚乙酸氧化酶(IAA oxidase)是一种含Fe的血红蛋白。IAA经酶解后形成3—羟基甲基氧吲哚和3—甲基氧吲哚。此反应要在O2存在下,以Mn和一元酚作辅助因子,吲哚乙酸氧化酶才表现活性。
②光氧化分解:
X-光,紫外光,可见光对IAA都有破坏作用,分解产物也是3-亚甲基氧化吲哚和吲哚醛。但目前机制不清楚,在试管里,植物的某些色素,如核黄素,紫黄质等能大量吸收兰光,并促进IAA的光氧化分解。
植物体内生长素存在的两种形式间的转化或吲哚乙酸氧化酶对IAA的氧化分解都是植物对体内生长素水平的自动调节,对植物生长的调控是有重要意义的。
生长素在农业上的运用:
一、促进营养器官的伸长
生长素(IAA)对营养器官纵向生长有明显的促进作用。如芽、茎、根三种器官,随着浓度升高,器官伸长递增至最大值,此时生长素浓度为最适浓度,超过最适浓度,器官的伸长受到抑制。不同器官的最适浓度不同,茎端最高,芽次之,根最低。由次可知,根对IAA(生长素)最敏感,极低的浓度就可促进根生长,最适浓度为10-10M。茎对IAA敏感程度比根低,最适浓度为10-5M。芽的敏感程度处于茎与根之间,最适浓度约为10-8M。所以能促进主茎生长的浓度往往对侧芽和根生长有抑制作用。
二、促进细胞分裂和根的分化
生长素与细胞分裂素配合能引起细胞分裂,而且生长素也能单独引起细胞分裂。如早春树木形成层细胞恢复分裂活动是由顶芽产生的生长素下运而引起的。
生长素对器官建成的作用最明显的是表现在促进根原基形成及生长上。苗木插枝在其基部产生不定根,对木本植物来说,主要是由新的次生韧皮部组织分化,但也可由其它组织分化形成,如形成层、维管射线及髓部。吲哚丁酸(IBA)在生长素中促进生根的效果最好,在应用方面发现IBA(吲哚丁酸)与萘乙酸(NAA)比吲哚乙酸(IAA)稳定,效果更好。
三、维持植物的顶端优势
正在生长的植物茎端对侧芽的生长有抑制作用,这种现象称为顶端优势。棉花用缩节胺控制顶端生长或打顶后,侧芽大量发生。
四、抑制离区的形成
棉花与果树落花、落果及落叶,是双子叶植物的普遍现象。棉花的蕾铃脱落,与营养物质的供给有关,也与激素水平有关。当蕾铃柄的基部,远轴端生长素含量高,近轴端生长素含量低时,抑制离层内纤维素酶、果胶酶的活性,因而抑制离层细胞的分离,蕾铃不脱落;反之,当近轴端生长素含量高,远轴端生长素含量低时,则使果胶酶和纤维素酶活性提高,促进离层的分离,致使蕾铃脱落。
五、促进果实发育及单性结实
植物开花受精之后,子房中的生长素含量提高,从而促进子房及其周围组织的膨大,加速了果实的发育。如雌蕊未经受精而子房能及时获得IAA,也能诱导某些植物无籽果实的形成。如在授粉前用生长素喷或涂于柱头上,不经授粉最终也能发育成单性果实。如胡椒、西瓜、番茄、茄子、冬青、西葫芦和无花果等 |
|
生长素 百科大全
shengzhangsu
生长素
auxin
即吲哚乙酸,是最早发现的促进植物生长的激素。英文来源于希腊文auxein(生长)。
研究历史 1880年C.R.达尔文及其子在最后出版的著作《植物运动的本领》中阐明,禾本科的加那利□草的胚芽鞘被切去顶端就失去向光性响应能力。他的解释是:当幼苗从侧面受光时,顶端产生的影响向下传送,造成向光与背光两侧生长速度不同,从而引起向受光一侧的弯曲,因而切去顶端后就不呈现向光性响应。1928年F.W.温特用实验证明胚芽鞘尖端有一种促进生长的物质,称之为生长素。它能扩散到琼胶小方块中,将所得小方块放回到切去顶端的胚芽鞘切面的一侧,可以引起胚芽鞘向另一侧弯曲。而且弯曲度大致与所含促进生长的物质的量成正比。这个实验不但证明了促进生长物质的存在,而且创造了著名的测定生长素的“燕麦试法”。1933年F.克格尔从人尿和酵母中分离出吲哚乙酸,它在燕麦试法中能引起胚芽鞘弯曲。以后证明吲哚乙酸即是生长素,普遍存在于各种植物组织之中。
物理化学性质 吲哚乙酸的纯品为白色结晶,难溶于水。易溶于乙醇、乙醚等有机溶剂。在光下易被氧化而变为红色,生理活性也降低。植物体内的吲哚乙酸有呈自由状态的,也有呈结合(被束缚)状态的。后者多是酯的或肽的复合物。植物体内自由态吲哚乙酸的含量很低,每千克鲜重约为1~100微克,因存在部位及组织种类而异,生长旺盛的组织或器官如生长点、花粉中的含量较多。
生物合成与代谢 从色氨酸开始,其途径有5个(见图吲哚乙酸生物合成途径)。图中③存在于西葫芦中,④存在于某些十字花科植物中,⑤存在于番茄中。
生长素的降解,最明显的是在光下很容易发生光氧化而被破坏。汤玉玮和J.邦纳于1947年发现植物组织中有些氧化酶能降解吲哚乙酸,称为吲哚乙酸氧化酶。
生理作用 生长素最明显的作用是促进生长,但对茎、芽、根生长的促进作用因浓度而异。三者的最适浓度是茎>芽>根,大约分别为每升10-5摩尔、10-8摩尔、10-10摩尔。植物体内吲哚乙酸的运转方向表现明显的极性,主要是由上而下。植物生长中抑制腋芽生长的顶端优势,与吲哚乙酸的极性运输及分布有密切关系。生长素还有促进愈伤组织形成和诱导生根的作用。
生长素的作用是多部位的,主要参与细胞壁的形成和核酸代谢。用放射性氨基酸饲喂离体组织的实验,证明生长素促进生长的同时也促进蛋白质的生物合成。生长素促进RNA的生物合成尤为显著,因此增加了RNA/DNA及RNA/蛋白质的比率。在各种 RNA中合成受促进最多的是rRNA。在对细胞壁的作用上,生长素活化氢离子泵,降低质膜外的pH值,还大大提高细胞壁的弹性和可塑性,从而使细胞壁变松,并提高吸水力。鉴于生长素影响原生质流动的时间阈值是2分钟,引起胚芽鞘伸长的是15分钟,时间极短,故认为其作用不会是通过影响基因调控,可能是通过影响蛋白质(特别是细胞壁或质膜中的蛋白质)合成中的翻译过程而发生的。
因为生长素在体内很容易经代谢而被破坏,所以外施时效果短暂。其类似物生理效果相近而且不易被破坏,故被广泛应用于农业生产(见植物生长调节物质)。
(崔□)
|
|
脑垂体前叶分泌的能促进身体生长的一种激素。生长素能通过促进肝脏产生生长素介质间接促进生长期的骨骺软骨形成,促进骨及软骨的生长,从而使躯体增高。生长素对中间代谢及能量代谢也有影响,可促进蛋白质合成,增强对钠、钾、钙、磷、硫等重要元素的摄取与利用,同时通过抑制糖的消耗,加速脂肪分解,使能量来源由糖代谢转向脂肪代谢。人在幼年时,如果生长素分泌不足,会导致生长发育迟缓,身体长得特别矮小,称“侏儒症”;如果生长素分泌过多,可引起全身各部过度生长,骨胳生长尤为显著,致使身材异常高大,称“巨人症”。成年后,骨骺已融合,长骨不再生长,此时如生长素分泌过多,将刺激肢端骨、面骨、软组织等增生,表现为手、足、鼻、下颌、耳、舌以及肝、肾等内脏显示出不相称的增大,称“肢端肥大症”。巨人症和肢端肥大症如果是垂体前叶肿瘤所致,可进行局部放射线照射治疗或手术切除,大剂量雌激素有抑制垂体分泌生长素的作用。对侏儒症应及早给予激素治疗,人生长素对侏儒症有显著疗效。由于生长素来源的困难,使生长素的临床应用致今未能广泛开展。目前科学家已试用基因工程方法将人类生长激素基因从染色体DNA链上分离出来,重组到质粒上,并用大肠杆菌进行转化,以期用发酵的方法生产人类的生长激素,因此临床应用可望推广。此外,部分侏儒症患儿,其垂体分泌生长激素的细胞并不减少,发病环节可能在下丘脑神经分泌细胞呈退行性变化,导致生长激素释放激素缺乏。目前对这种患儿试用人工合成的人胰腺生长激素释放因子进行治疗,已取得了一定疗效。 |
|
- : somatotropin
- n.: auxin, bios
|
|
|
|
促生长素 | 抗生长素 | 抑生长素 | 异生长素 | 植物生长素 | 神经生长素 | 束缚生长素 | 合成生长素 | 血管生长素 | 生长素介质 | 人类生长素 | 细胞生长素 | 金磊生长素 | 异植物生长素 | 胸苷促生长素 | 生长素类似物 | 胸腺促生长素 | 抗植物生长素 | 促生长素抑制素 | 促生长素释放素 | 生长素响应因子 | 促肝细胞生长素 | 重组人类生长素 | 法国人体生长素 | 促红细胞生长素 | 胸腺细胞生长素 | 生长素释放激素 | 促血红细胞生长素 | 生长素的极性运输 | 促生长素释放因子 | 生长素自养微生物 | 生长素异养微生物 | 神经生长素注射液 | HGH重组人类生长素 | PERFECTHA重组人类生长素 | 法国Eurohormones人体生长素 | 催乳生长素细胞腺瘤 | 脑神经生长素注射液 | 植物生长素作用机理 | 促肝细胞生长素注射液 | 注射用促肝细胞生长素 | 促肝细胞生长素冻干粉针 | 促肝细胞生长素肠溶胶囊 | 促肝细胞生长素颗粒剂 | 生长素在植物体内的运输 | hgh人类生长素 | 注射用促肝细胞生长素丰原 | 甘肃省植物生长素厂经营部 | 注射用促肝细胞生长素冻干 | 甘肃省植物生长素厂 | 山东省青岛市植物生长素厂 | 重组人红细胞生长素 | 农用生长素的毒性效应 | 促生长素释放激素酰胺 | 促肝细胞生长素颗粒 | 促肝细胞生长素口服液 | 重组人红细胞生长素注射液 | 广西南宁市灵素植物生长素厂 | |
|