癌症,它几乎肆虐横行在人体的每一个部位。肿瘤袭击大脑和脏腑、肌肉和骨骼。有一些潜移默化,有一些则来势汹汹。人体组织中出现肿瘤意味着正常功能毁于一旦,大厦将倾,混乱不堪。人体的生物机制原本是如此完美、精密、妙不可言,然而这一切都因癌症发生了令人沮丧的变化。无论癌症在何处现身,它们总是以外来生命形式的面目出现,鬼鬼祟祟地潜入人体,然后在人体内启动毁灭之旅。然而这只不过是一种假象:真相远比它复杂、有趣。
肿瘤并非入侵的外敌。它们和构建人体组织的物质系出同门。肿瘤同样是人体细胞筑就的噩梦,它们侵蚀生物秩序,破坏生物功能,假如一路绿灯,所向披靡,它们将令整个复杂的生命体系土崩瓦解。
细胞是怎样组合成人体组织的呢?想来该是有一些技艺高超的建筑师监督着成群工人各就各位,形成或正常或恶性的组织吧?事实上,这种发号施令、调遣细胞排列组合的角色并不存在。人体组织的复杂性来源于构筑大厦的每一块砖石——个体细胞本身。变化自下而上地发生着。
正常细胞和肿瘤细胞都知道自己的使命。每一个细胞都携带着自己的程序,告诉自己何时成长、何时分裂、如何和别的细胞联手构造器官及组织。我们的身体就是由高度自治的细胞组成的极为复杂的社会。作为一个完全独立的个体,每一个细胞都各具特质。
正是在这一领域,我们发现了惊人的协调,同时又蕴涵着巨大的风险。无数细胞戮力同心创建了统一的、协调一致的人体,这是多么美妙啊!然而,由于缺少一个俯瞰众生的总建筑师,生命体又是处在怎样的危险中啊!数以兆计的工人完全自治,混乱自然难以避免。通常情况下,细胞们行为规范,热心公益,人体秩序井然。但是,在器官或组织内部,偶尔会有那么一个细胞特立独行。这时,人们避之惟恐不及的灾难——癌症来临了。
在人们不经意之间,多数肿瘤已发展成拥有几十亿个甚至更多细胞的庞然大物。一个肿瘤内的细胞在很多方面,诸如外形、生长特性、新陈代谢,都和它们在正常情况下的表现大相径庭。突然之间出现了这么一大帮怪异的细胞,说明存在着集体倒戈的现象,有几百万个正常细胞一夜之间投入了肿瘤体的麾下。
可是,这又是假象。肿瘤的形成是一个旷日持久的过程,常常要持续几十年的时间。所有的肿瘤细胞都是同一个先祖、一个存活在肿瘤体显山露水之前许多年的祖先的直系后裔。这一个离经叛道、恣意妄为的细胞,它在人体的某个组织内开始了自己独特的生长道路。自此以后,是它自身内部的程序而不再是周围细胞群体的需要决定着它的扩张行径。
所以,不是几百万个新生力量,而是一个始作俑者,产生了数目巨大、一脉相承的叛乱后裔。肿瘤中那几十亿个细胞同它们叛逆的祖光如出一辙,它们对于周围组织的健康成长毫无兴趣。同先祖一样,它们抱定一个宗旨:快快成长,快快裂变,无限扩张。
这些细胞制造的混乱说明,让人体内每一个细胞自作主张是极其危险的。然而,6亿年来,不独人体,所有复杂的多细胞生物都是这么构造的。有鉴于此,我们认识到,癌症并不是摩登祸患,而是从古至今所有多细胞生物体共有的危难。实际上,想想人体内那数以兆计的细胞,癌症没有在我们漫长的人生旅途中频源亮相已经是一个奇迹了。体内蓝图
为了理解肿瘤生长的方式,我们必须了解构成肿瘤的细胞。纯洁的个体细胞为什么一反常态、胡作非为起来?概言之,正常细胞或者癌细胞,它们怎么能知道何时开始生长?难道细胞有自我意识吗?如果答案是否定的,那么在人体细胞内部,究竟是何种复杂的决策机制决定细胞的生长、休眠或者死亡呢?
本书的焦点问题是正常人体细胞拥有的内部机制。这种机制告诉细胞如何、何时成长并与其他细胞联手创造功能高度协调的人体组织。不同细胞携带的程序反映了它们各自行为的复杂生物方案及蓝图。我们将会看到,当癌症发生时,这种内部程序起了变化。只有理解了这种程序的正常及缺陷状态,我们才能弄懂驱策癌细胞的动力。
人体内有几百种细胞。不同种类的细胞聚合形成不同的组织和器官。鉴于细胞个体的差异性,我们可能会猜测,由于每一种细胞都携带着不同的方案,每种方案都指示着独特的成长以及构筑组织的能力,因此人体内存在着数目巨大的方案群。直觉令我们误入歧途。事实上,尽管人体内不同部分——不论大脑、肌肉、肝脏还是肾脏——一的细胞外表各异,但它们又非常相似,出人意料地携带着一模一样的蓝图。
这种同一性可以追溯到它们的共同起源。如同肿瘤细胞一样,正常人体细胞也源自一个共同的祖细胞。它们属于一个大家庭,彼此有着血缘关系,通过反复生长、分裂,受精卵从单细胞变成了几万亿个细胞,形成了整个人体。一个成年人体的细胞数量——超过了几十万亿——远远超乎人们的想象力。
指引着人体细胞的蓝图最初见诸于早先的受精卵,而后代代相传。实际上所有的人体后代细胞都不变地继承了这一蓝图。可是,尽管几万亿个细胞拥有同一套行为规范体系,它们的外表、行为仍然大异其趣。在细胞共同的内部蓝图与它们还异的外表之间,有着惊人的悻离。看来外表并不能告诉我们多少指引细胞生命轨迹的内部程序。
单一、共同的规划怎会产生如此差异呢?在过去的几十年里,人们找到了一个简单的答案:人体细胞携带的复杂的主导规划中,含有的信息量大大超出了单个细胞可能利用的数量。单细胞有选择地对待它们拥有的共同蓝图。从巨大的信息库中读取某些特定信息来设计自身行为。这种选择性的阅读方法使得全身每一个细胞都各具特色,和它们的亲戚们(无论亲疏)泾渭分明。
卵子受精后不久就开始分裂,而后它的两个女儿继续这一过程。随后的胚胎发育过程则是细胞的疯狂生长和分裂。受精卵产生的最初几代细胞看上去极其相似;它们紧密结合成一个无差别、同根生的细胞簇,形成一个细小的浆果。伴随着胚胎的发育进程,这些细胞的后代开始显露出差异。它们开始分化为肌肉、大脑或者血液细胞群的成员。这一个选择不同命运的过程——差别化过程——是人体发育的核心秘密,也是缠绕在研究者们胸中的不解之谜。
胚胎一隅的某个细胞读取了产生血红蛋白的基因指示,成长为一个血红细胞;别处的某个细胞考虑了制造消化酶的信息,变成了胰腺的一部分;还有一个细胞学会了如何释放出电信号,成为大脑的一分子。
胚胎细胞有选择地读取基因内容从而选择了调异的性状,这一决策并非是细胞必须作出的惟一重要决定。在它的基因蓝图中,它尚需考虑另一个举足轻重的议题:何时开始生长、分裂,何时又该驻足休息。
这些关于成长的指令不仅在早期、而且在以后相当长的时间内仍有重要意义。在大多数成熟组织内部,细胞不断地新陈代谢。事实上,一个成熟组织维持正常构造的能力,取决于前仆后继的机制,即由大量候补者的生长来补偿前任细胞的偶尔缺失。如果候补者过少,组织会枯萎衰竭。如果候补者太多了,组织又会扩张出正常界限,也许会畸变成肿瘤。适度控制细胞的扩张是非常重要的,这一任务贯穿生物体的一生。
要理解癌症,我们必须搞清正常细胞的内部蓝图是如何告诉他们开始繁殖的时间,我们必须明白癌细胞的蓝图是如何发生了错乱。癌症的根源就在于这一蓝图。基因的数目,一直存在争议。最确切的估计大概在7万一10万之间。这些基因共同组成的基因库,就是被称作人类基因组的总体蓝图。
蓝图一词意味着精确、严谨、一丝不苟。斟酌后确定的蓝图可以避免秩序混乱。生物学家们很早就意识到这种蓝图的存在,尽管那时他们对于细胞的内部机制所知寥寥。人们最初将蓝图同整个生物体联系在一起,以后才发现蓝图对于单细胞的生存也是不可或缺的。
19世纪中叶,奥地利修土格雷戈尔·孟德尔(GregorMendel)确立了生物体遗传原理。他着重研究豌豆属植物基因性状的传递——例如花的颜色、种子的性状。他的研究成果一度湮没,在20世纪初能够重见天日要归功于三位遗传学家。后世所称的孟德尔遗传定律以几个简单概念为基础。首先,从豌豆属植物到人类,所有复杂的生物体都通过同一种遗传机制将基因从父母传递给子女。其次,一个生物体的性状在理论上可以分解为大量独立性状的组合,譬如豌豆花的颜色和豆粒形状、人类眼珠的颜色或者身高。再次,每一性状都可以追溯到通过有性繁殖由父母传给子女的某些肉眼不可见的信息包的作用结果。这些信息包的有效传递使得子女能够取得与其父母极为相似的性状。
这种信息包被称作基因;每一个人类基因都担负着组建一种人体性状的功能。随着我们对基因的了解越来越多,很显然,人体的所有领域,直到肉眼不可见的单细胞的内部工作机制,都是由个人从他(她)的父母处承袭的基因决定的。它说明所谓的总体蓝图就是基因的大汇合。
我们已经知道,蓝图基因并不是存放在人体某个单一的中枢库房内。相反,几万亿个细胞中的每一个都携带着全部蓝图的一份完整副本。这一简单事实迫使我们重新考虑,在复杂的生物体内,基因是如何组织其内部构造的:基因直接控制着细胞个体的行为。在自身基因的操纵下,单细胞同其他所有细胞共同创建了生物体的形式和功能。因此,整个生物体的复杂性正代表了体内所有个体细胞的行为总和。也就是说,主导细胞活动的基因组就是控制生物体外观和行为的那个基因组。
长久以来,围绕组成人类遗传蓝图的不同信息包——个体基因——的数目,一直存在争议。最确切的估计大概在7万一10万之间。这些基因共同组成的基因库,就是被称作人类基因组的总体蓝图。
基因组分为不同的基因部门,这一事实产生了几个后果。如前所述,细胞可以在它的基因库中,从书架上有选择地抽取书卷——不同的基因——来阅读。此外,由于信息包是由父体或母体传递给子女,它们彼此之间是独立的。这就能更好地解释为什么我们继承的是父母各自拥有的某些基因了。受精卵的基因库是此前父母各自拥有的基因的混合。
然而将基因描述为信息包还是不能使人满意,因为这种想象缺乏物质基础。我们迟早要涉足基因的物质内容。同生物体的其他组成部分一样,基因也是物质实体,因此它必然表现为可识别的各种分子。
自1944年起,我们知道了基因的物质表现是DNA(脱氧核糖核酸)分子。DNA分子携带有遗传信息。它们的结构非常简单:每个DNA分子都是由两条相互盘绕的链组成的双螺旋。每条链都是由单一成分首尾相接纵向排列构成的长聚合物,为讨论方便,可称此单一成分为碱基。
DNA碱基有四种——A、C、G、T”。重要的是这四种碱基可以任意组合。碱基序列决定了DNA的信息内容。碱基可以无限地排列组合,相应地,DNA链可以长达几千万个碱基。从这样一条长链中截取一个片段,就是特定的碱基序列,例如ACCGGT.一CAAGTTTCAGAG。现代基因技术使得我们能够通过“DNA测序”过程发现碱基序列。迄今为止,从细菌、蠕虫、苍蝇到智人,人们已经确定了不同生物体的几千万种碱基序列。
DNA碱基序列的变化多端意味着,在理论上,DNA分子足以容纳任何信息,无论生物信息还是其他。初初一看,仅仅四个字母的组合提供的信息携带能力非常有限,但实际上,四个字母已经绰绰有余。摩尔斯电码三个字符(点“·”,破折号“一”,空格“’),计算机二进位制代码的两个字符(0和1)同样有无限的信息存储能力。
DNA双螺旋事实上携带着两套遗传信息,相互盘绕的两条链各带一套。自1953年詹姆斯·沃森(JamesWatson)和弗朗西斯·克里克(FrancisCrick)划时代的发现以来,我们知道双螺旋一条链中的A总是与对面那条链中的T对应;C则必然对应着G。因此一条链上ACCGGTCAA序列将与另一条链上的互补序列TGGCCAGTT相互盘绕。
由一链的碱基序列能够推知另一链上的序列,因此一条链携带的信息也体现在另一条链中,虽然表现为互补语言。这种信息储备有很多益处,其中最重要的是螺旋因之能够被复制。尤其如图1.1所示,两部分各自可以作为独立的模板来复制新的互补序列,新序列再包裹着自己的模板。结果,两个双螺旋子体彼此之间、以及同它们的双螺旋母体之间,都是一模一样的。
当细胞生长、分裂时,碱基序列的复制显出其重要性。在此过程中,一个母细胞把精确复制自身DNA螺旋的能力赋予它未来的子细胞。母子传递使最初受精卵DNA中含有的遗传信息在几百回合的细胞分裂过程中连续传递给几十亿个后代细胞,这些细胞最终形成成年人体。
那么抽象的基因概念究竟是如何同DNA分子的物质结构联系起来的呢?细胞染色体中包含的DNA双螺旋常常有几亿个碱基对的长度。这些碱基长链按其信息区划可以分成不同部分,每一区划构成一个基因。一个普通的人类基因由几万个DNA碱基组成。在四个字母代码组成的碱基序列中,有某些标点符号标志着基因的始终。在英文中,句首是一个空格再加一个大写字母;基因的开头则是一个特别的几千个碱基组成的短序列。同样,英文句子用句号结尾,基因尾部也有其独特的碱基序列起着标点符号的作用。在螺旋链上,一个基因的结尾后,标志下一个基因开端的标点序列之前,往往有一个由好几干个碱基组成的序列,这个序列是无意义的遗传杂音。
人类基因组的全部信息内容由30亿个碱基对组成的DNA序列组成,可分为7万一10万个代表不同基因的区域。这些基因以不同组合在我们的细胞内工作,创造出结构极其复杂的人体,包括大脑这个高度精密的器官。
基因、DNA双螺旋、碱基序列的故事为我们理解人类、甚至是地球上所有的生命形式提供了一把金钥匙。但我们在此关注的,仅仅是这一复杂集合中的一小个片段,即人类的癌症。我们可以略过基因是如何指令细胞组合构成组织和器官这个艰难的问题,而把注意力集中在基因是怎样影响个体细胞的成长行为这个范围比较小的问题。
因此我们收拢视线,聚焦控制个体细胞生长的一小部分基因。这些基因将直接引导我们进入癌症问题的核心,它们揭示了癌症的起源,终有那么一天,它们也将给我们指出战胜癌症的光明道路。
肿瘤并非入侵的外敌。它们和构建人体组织的物质系出同门。肿瘤同样是人体细胞筑就的噩梦,它们侵蚀生物秩序,破坏生物功能,假如一路绿灯,所向披靡,它们将令整个复杂的生命体系土崩瓦解。
细胞是怎样组合成人体组织的呢?想来该是有一些技艺高超的建筑师监督着成群工人各就各位,形成或正常或恶性的组织吧?事实上,这种发号施令、调遣细胞排列组合的角色并不存在。人体组织的复杂性来源于构筑大厦的每一块砖石——个体细胞本身。变化自下而上地发生着。
正常细胞和肿瘤细胞都知道自己的使命。每一个细胞都携带着自己的程序,告诉自己何时成长、何时分裂、如何和别的细胞联手构造器官及组织。我们的身体就是由高度自治的细胞组成的极为复杂的社会。作为一个完全独立的个体,每一个细胞都各具特质。
正是在这一领域,我们发现了惊人的协调,同时又蕴涵着巨大的风险。无数细胞戮力同心创建了统一的、协调一致的人体,这是多么美妙啊!然而,由于缺少一个俯瞰众生的总建筑师,生命体又是处在怎样的危险中啊!数以兆计的工人完全自治,混乱自然难以避免。通常情况下,细胞们行为规范,热心公益,人体秩序井然。但是,在器官或组织内部,偶尔会有那么一个细胞特立独行。这时,人们避之惟恐不及的灾难——癌症来临了。
在人们不经意之间,多数肿瘤已发展成拥有几十亿个甚至更多细胞的庞然大物。一个肿瘤内的细胞在很多方面,诸如外形、生长特性、新陈代谢,都和它们在正常情况下的表现大相径庭。突然之间出现了这么一大帮怪异的细胞,说明存在着集体倒戈的现象,有几百万个正常细胞一夜之间投入了肿瘤体的麾下。
可是,这又是假象。肿瘤的形成是一个旷日持久的过程,常常要持续几十年的时间。所有的肿瘤细胞都是同一个先祖、一个存活在肿瘤体显山露水之前许多年的祖先的直系后裔。这一个离经叛道、恣意妄为的细胞,它在人体的某个组织内开始了自己独特的生长道路。自此以后,是它自身内部的程序而不再是周围细胞群体的需要决定着它的扩张行径。
所以,不是几百万个新生力量,而是一个始作俑者,产生了数目巨大、一脉相承的叛乱后裔。肿瘤中那几十亿个细胞同它们叛逆的祖光如出一辙,它们对于周围组织的健康成长毫无兴趣。同先祖一样,它们抱定一个宗旨:快快成长,快快裂变,无限扩张。
这些细胞制造的混乱说明,让人体内每一个细胞自作主张是极其危险的。然而,6亿年来,不独人体,所有复杂的多细胞生物都是这么构造的。有鉴于此,我们认识到,癌症并不是摩登祸患,而是从古至今所有多细胞生物体共有的危难。实际上,想想人体内那数以兆计的细胞,癌症没有在我们漫长的人生旅途中频源亮相已经是一个奇迹了。体内蓝图
为了理解肿瘤生长的方式,我们必须了解构成肿瘤的细胞。纯洁的个体细胞为什么一反常态、胡作非为起来?概言之,正常细胞或者癌细胞,它们怎么能知道何时开始生长?难道细胞有自我意识吗?如果答案是否定的,那么在人体细胞内部,究竟是何种复杂的决策机制决定细胞的生长、休眠或者死亡呢?
本书的焦点问题是正常人体细胞拥有的内部机制。这种机制告诉细胞如何、何时成长并与其他细胞联手创造功能高度协调的人体组织。不同细胞携带的程序反映了它们各自行为的复杂生物方案及蓝图。我们将会看到,当癌症发生时,这种内部程序起了变化。只有理解了这种程序的正常及缺陷状态,我们才能弄懂驱策癌细胞的动力。
人体内有几百种细胞。不同种类的细胞聚合形成不同的组织和器官。鉴于细胞个体的差异性,我们可能会猜测,由于每一种细胞都携带着不同的方案,每种方案都指示着独特的成长以及构筑组织的能力,因此人体内存在着数目巨大的方案群。直觉令我们误入歧途。事实上,尽管人体内不同部分——不论大脑、肌肉、肝脏还是肾脏——一的细胞外表各异,但它们又非常相似,出人意料地携带着一模一样的蓝图。
这种同一性可以追溯到它们的共同起源。如同肿瘤细胞一样,正常人体细胞也源自一个共同的祖细胞。它们属于一个大家庭,彼此有着血缘关系,通过反复生长、分裂,受精卵从单细胞变成了几万亿个细胞,形成了整个人体。一个成年人体的细胞数量——超过了几十万亿——远远超乎人们的想象力。
指引着人体细胞的蓝图最初见诸于早先的受精卵,而后代代相传。实际上所有的人体后代细胞都不变地继承了这一蓝图。可是,尽管几万亿个细胞拥有同一套行为规范体系,它们的外表、行为仍然大异其趣。在细胞共同的内部蓝图与它们还异的外表之间,有着惊人的悻离。看来外表并不能告诉我们多少指引细胞生命轨迹的内部程序。
单一、共同的规划怎会产生如此差异呢?在过去的几十年里,人们找到了一个简单的答案:人体细胞携带的复杂的主导规划中,含有的信息量大大超出了单个细胞可能利用的数量。单细胞有选择地对待它们拥有的共同蓝图。从巨大的信息库中读取某些特定信息来设计自身行为。这种选择性的阅读方法使得全身每一个细胞都各具特色,和它们的亲戚们(无论亲疏)泾渭分明。
卵子受精后不久就开始分裂,而后它的两个女儿继续这一过程。随后的胚胎发育过程则是细胞的疯狂生长和分裂。受精卵产生的最初几代细胞看上去极其相似;它们紧密结合成一个无差别、同根生的细胞簇,形成一个细小的浆果。伴随着胚胎的发育进程,这些细胞的后代开始显露出差异。它们开始分化为肌肉、大脑或者血液细胞群的成员。这一个选择不同命运的过程——差别化过程——是人体发育的核心秘密,也是缠绕在研究者们胸中的不解之谜。
胚胎一隅的某个细胞读取了产生血红蛋白的基因指示,成长为一个血红细胞;别处的某个细胞考虑了制造消化酶的信息,变成了胰腺的一部分;还有一个细胞学会了如何释放出电信号,成为大脑的一分子。
胚胎细胞有选择地读取基因内容从而选择了调异的性状,这一决策并非是细胞必须作出的惟一重要决定。在它的基因蓝图中,它尚需考虑另一个举足轻重的议题:何时开始生长、分裂,何时又该驻足休息。
这些关于成长的指令不仅在早期、而且在以后相当长的时间内仍有重要意义。在大多数成熟组织内部,细胞不断地新陈代谢。事实上,一个成熟组织维持正常构造的能力,取决于前仆后继的机制,即由大量候补者的生长来补偿前任细胞的偶尔缺失。如果候补者过少,组织会枯萎衰竭。如果候补者太多了,组织又会扩张出正常界限,也许会畸变成肿瘤。适度控制细胞的扩张是非常重要的,这一任务贯穿生物体的一生。
要理解癌症,我们必须搞清正常细胞的内部蓝图是如何告诉他们开始繁殖的时间,我们必须明白癌细胞的蓝图是如何发生了错乱。癌症的根源就在于这一蓝图。基因的数目,一直存在争议。最确切的估计大概在7万一10万之间。这些基因共同组成的基因库,就是被称作人类基因组的总体蓝图。
蓝图一词意味着精确、严谨、一丝不苟。斟酌后确定的蓝图可以避免秩序混乱。生物学家们很早就意识到这种蓝图的存在,尽管那时他们对于细胞的内部机制所知寥寥。人们最初将蓝图同整个生物体联系在一起,以后才发现蓝图对于单细胞的生存也是不可或缺的。
19世纪中叶,奥地利修土格雷戈尔·孟德尔(GregorMendel)确立了生物体遗传原理。他着重研究豌豆属植物基因性状的传递——例如花的颜色、种子的性状。他的研究成果一度湮没,在20世纪初能够重见天日要归功于三位遗传学家。后世所称的孟德尔遗传定律以几个简单概念为基础。首先,从豌豆属植物到人类,所有复杂的生物体都通过同一种遗传机制将基因从父母传递给子女。其次,一个生物体的性状在理论上可以分解为大量独立性状的组合,譬如豌豆花的颜色和豆粒形状、人类眼珠的颜色或者身高。再次,每一性状都可以追溯到通过有性繁殖由父母传给子女的某些肉眼不可见的信息包的作用结果。这些信息包的有效传递使得子女能够取得与其父母极为相似的性状。
这种信息包被称作基因;每一个人类基因都担负着组建一种人体性状的功能。随着我们对基因的了解越来越多,很显然,人体的所有领域,直到肉眼不可见的单细胞的内部工作机制,都是由个人从他(她)的父母处承袭的基因决定的。它说明所谓的总体蓝图就是基因的大汇合。
我们已经知道,蓝图基因并不是存放在人体某个单一的中枢库房内。相反,几万亿个细胞中的每一个都携带着全部蓝图的一份完整副本。这一简单事实迫使我们重新考虑,在复杂的生物体内,基因是如何组织其内部构造的:基因直接控制着细胞个体的行为。在自身基因的操纵下,单细胞同其他所有细胞共同创建了生物体的形式和功能。因此,整个生物体的复杂性正代表了体内所有个体细胞的行为总和。也就是说,主导细胞活动的基因组就是控制生物体外观和行为的那个基因组。
长久以来,围绕组成人类遗传蓝图的不同信息包——个体基因——的数目,一直存在争议。最确切的估计大概在7万一10万之间。这些基因共同组成的基因库,就是被称作人类基因组的总体蓝图。
基因组分为不同的基因部门,这一事实产生了几个后果。如前所述,细胞可以在它的基因库中,从书架上有选择地抽取书卷——不同的基因——来阅读。此外,由于信息包是由父体或母体传递给子女,它们彼此之间是独立的。这就能更好地解释为什么我们继承的是父母各自拥有的某些基因了。受精卵的基因库是此前父母各自拥有的基因的混合。
然而将基因描述为信息包还是不能使人满意,因为这种想象缺乏物质基础。我们迟早要涉足基因的物质内容。同生物体的其他组成部分一样,基因也是物质实体,因此它必然表现为可识别的各种分子。
自1944年起,我们知道了基因的物质表现是DNA(脱氧核糖核酸)分子。DNA分子携带有遗传信息。它们的结构非常简单:每个DNA分子都是由两条相互盘绕的链组成的双螺旋。每条链都是由单一成分首尾相接纵向排列构成的长聚合物,为讨论方便,可称此单一成分为碱基。
DNA碱基有四种——A、C、G、T”。重要的是这四种碱基可以任意组合。碱基序列决定了DNA的信息内容。碱基可以无限地排列组合,相应地,DNA链可以长达几千万个碱基。从这样一条长链中截取一个片段,就是特定的碱基序列,例如ACCGGT.一CAAGTTTCAGAG。现代基因技术使得我们能够通过“DNA测序”过程发现碱基序列。迄今为止,从细菌、蠕虫、苍蝇到智人,人们已经确定了不同生物体的几千万种碱基序列。
DNA碱基序列的变化多端意味着,在理论上,DNA分子足以容纳任何信息,无论生物信息还是其他。初初一看,仅仅四个字母的组合提供的信息携带能力非常有限,但实际上,四个字母已经绰绰有余。摩尔斯电码三个字符(点“·”,破折号“一”,空格“’),计算机二进位制代码的两个字符(0和1)同样有无限的信息存储能力。
DNA双螺旋事实上携带着两套遗传信息,相互盘绕的两条链各带一套。自1953年詹姆斯·沃森(JamesWatson)和弗朗西斯·克里克(FrancisCrick)划时代的发现以来,我们知道双螺旋一条链中的A总是与对面那条链中的T对应;C则必然对应着G。因此一条链上ACCGGTCAA序列将与另一条链上的互补序列TGGCCAGTT相互盘绕。
由一链的碱基序列能够推知另一链上的序列,因此一条链携带的信息也体现在另一条链中,虽然表现为互补语言。这种信息储备有很多益处,其中最重要的是螺旋因之能够被复制。尤其如图1.1所示,两部分各自可以作为独立的模板来复制新的互补序列,新序列再包裹着自己的模板。结果,两个双螺旋子体彼此之间、以及同它们的双螺旋母体之间,都是一模一样的。
当细胞生长、分裂时,碱基序列的复制显出其重要性。在此过程中,一个母细胞把精确复制自身DNA螺旋的能力赋予它未来的子细胞。母子传递使最初受精卵DNA中含有的遗传信息在几百回合的细胞分裂过程中连续传递给几十亿个后代细胞,这些细胞最终形成成年人体。
那么抽象的基因概念究竟是如何同DNA分子的物质结构联系起来的呢?细胞染色体中包含的DNA双螺旋常常有几亿个碱基对的长度。这些碱基长链按其信息区划可以分成不同部分,每一区划构成一个基因。一个普通的人类基因由几万个DNA碱基组成。在四个字母代码组成的碱基序列中,有某些标点符号标志着基因的始终。在英文中,句首是一个空格再加一个大写字母;基因的开头则是一个特别的几千个碱基组成的短序列。同样,英文句子用句号结尾,基因尾部也有其独特的碱基序列起着标点符号的作用。在螺旋链上,一个基因的结尾后,标志下一个基因开端的标点序列之前,往往有一个由好几干个碱基组成的序列,这个序列是无意义的遗传杂音。
人类基因组的全部信息内容由30亿个碱基对组成的DNA序列组成,可分为7万一10万个代表不同基因的区域。这些基因以不同组合在我们的细胞内工作,创造出结构极其复杂的人体,包括大脑这个高度精密的器官。
基因、DNA双螺旋、碱基序列的故事为我们理解人类、甚至是地球上所有的生命形式提供了一把金钥匙。但我们在此关注的,仅仅是这一复杂集合中的一小个片段,即人类的癌症。我们可以略过基因是如何指令细胞组合构成组织和器官这个艰难的问题,而把注意力集中在基因是怎样影响个体细胞的成长行为这个范围比较小的问题。
因此我们收拢视线,聚焦控制个体细胞生长的一小部分基因。这些基因将直接引导我们进入癌症问题的核心,它们揭示了癌症的起源,终有那么一天,它们也将给我们指出战胜癌症的光明道路。
为了理解癌症的根源,让我们先放下对于细胞和基因的讨论,转向另一个截然不同的方向,即研究、描述人类及人类所患疾病的科学——流行病学。流行病学者研究大范围人群中的发病情况,癌症流行病学家更是着力研究不同人群中的癌症发病率。他们的工作几乎总是由这样一个核心问题推动着:不同行为或环境究竟是怎样影响某种癌症的发病率的呢?癌症发病率成为有趣的科研主题还是晚近的事。癌症直到19世纪仍是相对罕见的病种,这一点从癌症主要发生于老年人的事实可以得到解释。在19世纪早期,许多欧洲国家的人口预期寿命只有35岁。许多人在生命的稍后时刻或许将罹患癌症,但他们很早就因传染病、营养不良或者意外事故走完了短暂一生。
至于极少数遭遇癌症的个案,大多将其归结为偶然事件或者上帝的旨意。但是,自18世纪最后10年来,积累的某些证据引出了另外一种见解:癌症的发生与患者的特殊经历或者生活方式有关。有些医生开始记录发生于特定人群的特定肿瘤,然后提出了这一新思想。
其中最有名、或许也是最早的发现,是由伦敦医生珀西瓦尔·波特(perCIV。lp。ti)在1775年提出的。他描述早年曾干过扫烟囱活计的男人患上阴囊癌。波特提出了首例其发病与特殊因素或环境有密切关系的癌种。不久,亦在伦敦,一个外科医生报道,吸鼻烟
散见于19世纪的各种报道强化了这种观点。德国东部的沥青铀矿上,矿工们患肺癌死亡,而该病在大量社会人口中都极为少见。到了20世纪初,那些与新发现的X线打交道的人被发现易患皮肤癌和白血病。那些在手表指针上涂抹发冷光的镭的妇女,因为常常舔刷毛,经诊断患有舌癌。自20世纪50年代早期始,吸烟人群的肺癌发病率日渐上升,通常要比不抽烟的人群高上20至30倍。
不同国家之间癌症的发病率也有巨大差异。非洲某些地方肝癌的发病率18倍于英国。日本人患胃癌的概率11信于美国人。美国人结肠癌的发病率是非洲某些地方的10到20倍。这些显著差异并非遗传易患性所致。当人们从世界某地迁居至另一地,他们的孩子很快呈现出新居所在地的典型癌种的高发率。
以上情况清楚说明,对许多癌症来说,人体组织未受激惹的自发崩溃这一解释已难以令人信服。另一种理论更有说服力:影响人体的外部因素——生活方式、饮食习惯或者环境——在癌症的发病中扮演着重要角色。发端于20世纪初的这场思想大转变同影响人们对传染病理解的另一次革命不谋而合。19世纪的最后几十年内,罗伯特·科赫和路易·巴斯德发现许多致命恶疾可以追溯到特殊、偶然的因素:细菌和病毒。从此,人类的疾病不再是随机、变幻莫测的自然力的作用,而是有其特殊的可知病因。
这一重大突破使我们能重新定义、阐明癌症问题。现在我们可以用更确切的语汇来表述癌症之谜:究竟生活方式和饮食习惯是珀怎样具体影响体内深处的组织行为的呢?要揭开此谜团,必须描述正常和癌变的细胞个体,以及细胞内部驱使其生长的机制。这样化繁为简——将复杂现象浓缩成单一的根本机制——很快成为当代癌症研究的中心议题,而且直到20世纪末,仍将是它的荣耀。癌症因子和靶基因
有关癌症不是人体组织随机、自发的恶化而是被激活的这一观点,根本上改变了许多癌症研究人员的思路。如果是外部因素激发了癌症,也许我们可以识别这些因素,研究它们的活动机制。也许,从最初的致癌因子到癌症产生这一整个过程都能被揭示。因此,直到19世纪末,全世界的科学家都试图在实验动物——小鼠、大鼠、兔子——身上再现癌症。年复一年,却无一成功。
在20世纪的第一个10年,日本首次获得成功。山际克三郎从欧洲扫烟囱工人的早期研究中获得了启示。最初珀西瓦尔·波特发现伦敦扫烟囱工人阴囊癌发病率很高,但是几十年后,其他人的研究发现,欧洲大陆的扫烟囱工人阴囊癌的发病率要低得多。看来这种差异与个人卫生习惯有关。英国的扫烟囱工人同他们许多18世纪的同胞一样极少洗澡,而欧洲大陆上的扫烟囱工人则经常洗澡。看来伦敦烟道里粘在英国扫烟囱工人皮肤上的杂酚焦油,如果不很快洗掉,会导致癌症。
相应地,山际在兔子的耳朵上反复涂抹煤焦油。好多个月后,兔耳上生了皮肤癌。而其他研究者之所以未能诱发癌症,因为他们要么过早放弃,要么没有想到须反复应用这种物质。
山际的试验直接表明经由特殊因素能够如愿在实验室里诱发癌症。兔耳肿瘤——也许包括其他所有肿瘤——能够找出明确的病因。可是,这一顿悟只能引发另一个举足轻重的问题:化学物质,譬如煤焦油中的那种,究竟是如何致癌的呢诶引发癌症的化学物质——化学致癌物——以某种方法侵入人体组织细胞,促使肿瘤生长。因此,癌症本身并非入侵者,真正的入侵者是致癌物质(本例中即是煤焦油)。
关于X线也能致癌的发现加深了这一谜团。在威廉·伦琴1895年的发现之后,X射线管广泛应用于骨骼造影和多种疾病的治疗。操作X线机器的技师以及许多受到X红眼颜色的基因作了深入研究。经X线照射后,眼睛颜色突变基因成了模板,眼睛失去色素,几乎变成纯白色。这个白眼性状能够子子孙孙无限传递。
到二次大战末期,人们发现某些化学物质能使果蝇发生突变。线照射的病人患上了皮肤癌和白血病。在这两种风马牛不相及的因素——化学物质和X线——之间究竟有着怎样隐蔽的联系,以至于双方都能诱发癌症呢?两者都是有害的,都会损害人体组织,杀死细胞。但是杀死细胞同癌症有什么关系呢?癌症的表现是组织细胞增生,同有害因素令组织细胞衰竭背道而驰。
到20世纪30年代,在美国化学家和癌症研究人员的共同努力下,对煤焦油问题有了更为深入的理解。他们发现煤焦油实际上是几百种乃至几千种不同化学物质的混合物。因此化学家们将焦油分离成许多种化学成分,然后分别交给癌症研究人员,由他们继续在实验动物身上测试每种成分的致癌能力。他们发现其中有些成分有很强的致癌作用。现在化学致癌物之谜可以表述得更为确切了:某些特定的化学物质成分,例如3一甲基胆蒽和二甲苯丙蒽——当然还有X线,会导致癌症。
可是,对于这些或者其他化学物质是如何诱发癌症这个根本问题,此种进展收效甚微。一如在癌症研究中惯常出现的场景,解决这个特殊问题的巨大飞跃来自同癌症没有明显联系的研究。这一回,最有力的结论来自对果蝇的遗传研究。到20世纪初期,人们认为果蝇拥有的一套遗传体系,同人类的非常相似。
尤为重要的是,果蝇的基因很容易被更换。一对果蝇的子女通常和父母一模一样。但是,在20世纪30年代,赫尔曼·穆勒发现,经X线照射过的果蝇产出的后代有时会拥有大不相同的性状。这些全新的性状常常会传递给下一代果蝇,然后代代相传。
穆勒的结论是,一度被认作能够详实准确地由上代传递给下一代的遗传物质,实际上非常脆弱易变。遗传学家称之为可突变的。以某种未知的方式,X线作用于遗传物质并且改变它的信息内容。所以,科学的思路和语汇应是:X线能够使基因突变。
X线引起的难以逆料的遗传变化常常是致命的。但在极少数情况下,这些遗传变化——突变——并没有影响到果蝇的生长发育,尽管基因改变了,它们仍然健康又茁壮。人们对一例通常规定红眼颜色的基因作了深入研究。经X线照射后,眼睛颜色突变基因成了模板,眼睛失去色素,几乎变成纯白色。这个白眼性状能够子子孙孙无限传递。
到二次大战末期,人们发现某些化学物质能使果蝇发生突变。其中一些是那种曾在一战期间用于毒气战的活性很强的氮荠。同以前相仿,一只曾暴露于化学物质的果蝇,它的第二代以及后代传递着变化了的基因形式,这些基因规定着诸如眼睛的颜色、肢体或毛发的发育等不同性状。
大约在1950年,几位遗传学家对积累的有关化学物质、X线、突变的信息进行了归纳,提出了一个统一的总结性理论,尽管它实际上仍属推测范畴。理论如下:X线和某些化学物质可以致癌。X线和化学物质也能导致基因突变。因此,这些致癌因素导致受其影响的动物发生基因突变。换言之,致癌物质(即引起癌症的因素)实即诱变因素(引起突变的因素),而且这两个过程之间有着干丝万缕解不开的瓜葛。
这一推理过程中蕴涵的前提是果蝇基因和人类基因拥有同一种行为模式。到20世纪50年代,这种理论愈发显出其魅力。人们发现果蝇基因和人类细胞都拥有DNA分子。而且,从蠕虫、苍蝇直至人类,所有复杂的生物体,其细胞的构成方式都极为相似。因此,从一个生物体推广到另一个,其立足点坚实雄厚。
这些诱变因素引发的突变也给人带来一点疑惑。遗传学家们研究过那些在有机体身上世代相传的突变基因。但在癌症情况下,诱变因素似乎仅仅损害那些机体内部特定位置的细胞基因。据此推断,一旦一个靶细胞的基因受损,这个突变细胞会在机体内似脱缰野马飞速扩张,迟早会产生一大堆被认作肿瘤的后代细胞。
这里似乎存在两套遗传体系:一套描述基因从生物体母代到子代的传递,一套描述组织内一个细胞的基因向该组织后代细胞的传递。在后一种情况下,被诱变致癌物质改变的基因通常没有机会传递给下一代生物体。肠道、大脑抑或肺细胞的基因,无论受损有多严重,永不会影响机体子代的遗传构成。
对这种二分法可以作更简单的表述:生殖细胞(精子或卵子)的突变可以传递给后代;身体其他部位的细胞(体细胞)发生的突变则不能遗传。这种被称作体细胞突变的玩意显然就是引发癌症的关键角色。
1953年沃森和克里克发现DNA双螺旋结构之后,可以用更确切的语汇来表述有关基因和突变的推断。如果基因内含的信息是以DNA碱基序列方式编码的,那么,突变就是DNA结构的改变,就是组成单个基因的DNA碱基序列发生了变化。如果致癌物质等同诱变因素的理论成立,那么癌细胞中必定含有碱基序列改变了的DNA分子。这些变化后的DNA序列,储存了正常细胞所没有的信息,以某种方式指引着癌细胞失控生长。
致癌物质一诱变因素理论之所以引人入胜,因为它将复杂的致癌现象简化成单一的根本机制。但是要证实这一理论,仍须再花30年的时间进行研究。遗传推论要比现有证据前卫得多,这是屡屡出现的事情。证实诱变因素是致癌物质
20世纪30年代,人们已经知道很多化学物质应用于实验动物身上,有致癌作用。不久,癌症研究人员办起了家庭小作坊,试图再试验动物身上诱发肿瘤。他们通常选择小鼠和大鼠。和山际的兔子一样,它们的生物机理和人类有一定相似,而且它们可以大量繁殖,在好多月份中反复应用化学物质。由于二战以后,化工业开始将几百乃至几千种化学成分投放市场,采用这种方法测试潜在的致癌物质尤显必要。
到20世纪60年代,这种测试方法已经拣选出许多经鉴定会导致啮齿类动物罹患癌症的物质。人们怀疑其中很多种也会使人类生癌,但在大多数情况下,由于不得有意识地将可疑致癌物质应用于人类,这种怀疑永不能得到证实。据信会使啮齿类动物生癌的化学物常常被迫撤出市场,即使被允许用于通常用途,其应用也受到严格限制。
啮齿类动物致癌物测试揭示出许多种能够诱发癌症的化学物。这些潜在的致癌化学物分子结构多种多样。进入生物体以及生物体细胞之后,它们同细胞内部的不同靶分子相结合,以某种方法改变甚至损害靶分子。化学致癌物的多样性意味着人体细胞内部的靶分子同样丰富多彩。
从试验中人们还认识到,不同的化学物对实验动物产生的致癌作用有很大差异。有时候,一种化学成分需要几百毫克地连续应用好多个月,才能诱发癌症。而其他化学物只需几微克的剂量,注射一两次,小鼠或大鼠就会生癌。这种致癌作用的差异系数高达100万甚至更多。测试中发现,致癌作用最强的化学物之一是自然生成的黄曲霉毒素。它是花生和谷物因贮存不当发霉后产生的。对啮齿类动物而言,即便是极少量的黄曲霉毒素也有很强的诱发肝癌作用,非洲一次流行病学调查显示其对人类也具有同样危险。
令人困惑的是居然有这么多的化学物被指证为致癌物质,这不仅没有简化癌症的起源问题,相反使它更复杂化了。怎样才能将堆成山的证据浓缩成少数简单原理呢?确切点说,如何用这些化学物的所作所为来阐明致癌物质一诱变因素理论呢?
20世纪70年代中期,加州大学伯克利分校的遗传学家布鲁斯·埃姆斯(Bruce Ames),为这一谜团提供了一个答案。埃姆斯的早期研究集中于细菌基因的运作。由于涉及细菌功能的基因同更复杂的生命形式的基因非常相似,因此,埃姆斯的工作和多数细菌遗传学一样,有着广泛的影响。细菌基因用DNA分子编码,而且和人类基因一样容易因突变受损。损害人类基因的X线和许多化学物,对细菌能产生同样后果。
研究细菌基因,对研究人类或小鼠基因有一个显著好处。细菌能够多快好省地生长。它们在20分钟内就可以开始繁殖,而小鼠则需要几个月的准备时间。所以,细菌遗传学的成果大大促进了20世纪60~70年代的基因研究。
埃姆斯试图找出一种简单的方法,用以衡量不同化学物的相对诱变能力。他把化学物应用在培养皿中繁殖的沙门菌基因上。在他运用最广泛的试验中,某个关键基因的突变使得突变细菌繁殖成的菌落在培养皿中清晰可见;未突变的细菌则无法有此作为。所以,要精确计量某种潜在诱变因素的作用大小,只要将这种化学物注入盛有适当细菌的培养皿,使细菌基因发生突变,然后计算器中出现的菌落数。增加的菌落数直接反映了受试化学物质的诱变效力。
埃姆斯搜集了一大批已知致癌物,然后用他的细菌突变分析法一个一个地测试过去。对测试结果的分析得出了令人振奋的相关性。对细菌有高度诱变作用的化学物质,在诱发实验用啮齿类动物肿瘤时同样有效;缺乏显著诱变作用的化学物看来也缺少致癌作用。
致癌物质一诱变因素理论不再是空中楼阁,第一次拥有了一点实验基础。而且,一种化学物的致癌能力似乎源自于它损害机体细胞基因的能力。在诱变力和致癌能力之间,果真有着密切联系。
被称作埃姆斯试验(Ames Test)的这一方法还有另一个意外收获。现在,对新发现的化学成分,科学家们可以在一两天内计量它的潜在致癌作用。那时,以人体测试化学成分的安全性受到猛烈抨击,代之以啮齿类动物作为试验对象,试验也需要几年时间,而埃姆斯测试要比它便宜百倍。埃姆斯测试得出的一次阳性结果,几乎决定了受试化学成分的未来命运。
当然,事情并非果真如此简单。有些化学物虽然在埃姆斯细菌测试中呈阴性,但是它们对啮齿类动物和人类癌症发病率的上升难辞其咎。石棉和酒精就是著名的例子。当然,也有一些化学物虽然对于细菌基因突变非常有效,但对哺乳动物只有很小的致癌作用。
所以可以作如下表述:诱变因素通过进入细胞,损害基因,从而导致癌症。不久,人们发现很多致癌物质直接作用于DNA分子,尤其是双螺旋两条链中的碱基。通过改变碱基结构,它们直接影响DNA的信息内容,这恰好就是诱变因素的意图。
因此通过埃姆斯以及其他人的贡献,致癌物质一诱变因素理论赢得了有力支持:许多致癌物经由损坏DNA这一途径,能够制造出突变基因。可是,这只不过是癌症起源的众多理论之一,只要缺少一个关键的证据,它就不能凌驾于其他学说之上,成为真理。如果说致癌物是通过改变基因来引发癌症,那么,癌细胞必定携有突变基因。必须找到这些突变基因。如果找不到,那么,和其他几十种试图阐述这一复杂病症的失败理论一样,致癌物质一诱变因素理论亦属不经之谈。
至于极少数遭遇癌症的个案,大多将其归结为偶然事件或者上帝的旨意。但是,自18世纪最后10年来,积累的某些证据引出了另外一种见解:癌症的发生与患者的特殊经历或者生活方式有关。有些医生开始记录发生于特定人群的特定肿瘤,然后提出了这一新思想。
其中最有名、或许也是最早的发现,是由伦敦医生珀西瓦尔·波特(perCIV。lp。ti)在1775年提出的。他描述早年曾干过扫烟囱活计的男人患上阴囊癌。波特提出了首例其发病与特殊因素或环境有密切关系的癌种。不久,亦在伦敦,一个外科医生报道,吸鼻烟
散见于19世纪的各种报道强化了这种观点。德国东部的沥青铀矿上,矿工们患肺癌死亡,而该病在大量社会人口中都极为少见。到了20世纪初,那些与新发现的X线打交道的人被发现易患皮肤癌和白血病。那些在手表指针上涂抹发冷光的镭的妇女,因为常常舔刷毛,经诊断患有舌癌。自20世纪50年代早期始,吸烟人群的肺癌发病率日渐上升,通常要比不抽烟的人群高上20至30倍。
不同国家之间癌症的发病率也有巨大差异。非洲某些地方肝癌的发病率18倍于英国。日本人患胃癌的概率11信于美国人。美国人结肠癌的发病率是非洲某些地方的10到20倍。这些显著差异并非遗传易患性所致。当人们从世界某地迁居至另一地,他们的孩子很快呈现出新居所在地的典型癌种的高发率。
以上情况清楚说明,对许多癌症来说,人体组织未受激惹的自发崩溃这一解释已难以令人信服。另一种理论更有说服力:影响人体的外部因素——生活方式、饮食习惯或者环境——在癌症的发病中扮演着重要角色。发端于20世纪初的这场思想大转变同影响人们对传染病理解的另一次革命不谋而合。19世纪的最后几十年内,罗伯特·科赫和路易·巴斯德发现许多致命恶疾可以追溯到特殊、偶然的因素:细菌和病毒。从此,人类的疾病不再是随机、变幻莫测的自然力的作用,而是有其特殊的可知病因。
这一重大突破使我们能重新定义、阐明癌症问题。现在我们可以用更确切的语汇来表述癌症之谜:究竟生活方式和饮食习惯是珀怎样具体影响体内深处的组织行为的呢?要揭开此谜团,必须描述正常和癌变的细胞个体,以及细胞内部驱使其生长的机制。这样化繁为简——将复杂现象浓缩成单一的根本机制——很快成为当代癌症研究的中心议题,而且直到20世纪末,仍将是它的荣耀。癌症因子和靶基因
有关癌症不是人体组织随机、自发的恶化而是被激活的这一观点,根本上改变了许多癌症研究人员的思路。如果是外部因素激发了癌症,也许我们可以识别这些因素,研究它们的活动机制。也许,从最初的致癌因子到癌症产生这一整个过程都能被揭示。因此,直到19世纪末,全世界的科学家都试图在实验动物——小鼠、大鼠、兔子——身上再现癌症。年复一年,却无一成功。
在20世纪的第一个10年,日本首次获得成功。山际克三郎从欧洲扫烟囱工人的早期研究中获得了启示。最初珀西瓦尔·波特发现伦敦扫烟囱工人阴囊癌发病率很高,但是几十年后,其他人的研究发现,欧洲大陆的扫烟囱工人阴囊癌的发病率要低得多。看来这种差异与个人卫生习惯有关。英国的扫烟囱工人同他们许多18世纪的同胞一样极少洗澡,而欧洲大陆上的扫烟囱工人则经常洗澡。看来伦敦烟道里粘在英国扫烟囱工人皮肤上的杂酚焦油,如果不很快洗掉,会导致癌症。
相应地,山际在兔子的耳朵上反复涂抹煤焦油。好多个月后,兔耳上生了皮肤癌。而其他研究者之所以未能诱发癌症,因为他们要么过早放弃,要么没有想到须反复应用这种物质。
山际的试验直接表明经由特殊因素能够如愿在实验室里诱发癌症。兔耳肿瘤——也许包括其他所有肿瘤——能够找出明确的病因。可是,这一顿悟只能引发另一个举足轻重的问题:化学物质,譬如煤焦油中的那种,究竟是如何致癌的呢诶引发癌症的化学物质——化学致癌物——以某种方法侵入人体组织细胞,促使肿瘤生长。因此,癌症本身并非入侵者,真正的入侵者是致癌物质(本例中即是煤焦油)。
关于X线也能致癌的发现加深了这一谜团。在威廉·伦琴1895年的发现之后,X射线管广泛应用于骨骼造影和多种疾病的治疗。操作X线机器的技师以及许多受到X红眼颜色的基因作了深入研究。经X线照射后,眼睛颜色突变基因成了模板,眼睛失去色素,几乎变成纯白色。这个白眼性状能够子子孙孙无限传递。
到二次大战末期,人们发现某些化学物质能使果蝇发生突变。线照射的病人患上了皮肤癌和白血病。在这两种风马牛不相及的因素——化学物质和X线——之间究竟有着怎样隐蔽的联系,以至于双方都能诱发癌症呢?两者都是有害的,都会损害人体组织,杀死细胞。但是杀死细胞同癌症有什么关系呢?癌症的表现是组织细胞增生,同有害因素令组织细胞衰竭背道而驰。
到20世纪30年代,在美国化学家和癌症研究人员的共同努力下,对煤焦油问题有了更为深入的理解。他们发现煤焦油实际上是几百种乃至几千种不同化学物质的混合物。因此化学家们将焦油分离成许多种化学成分,然后分别交给癌症研究人员,由他们继续在实验动物身上测试每种成分的致癌能力。他们发现其中有些成分有很强的致癌作用。现在化学致癌物之谜可以表述得更为确切了:某些特定的化学物质成分,例如3一甲基胆蒽和二甲苯丙蒽——当然还有X线,会导致癌症。
可是,对于这些或者其他化学物质是如何诱发癌症这个根本问题,此种进展收效甚微。一如在癌症研究中惯常出现的场景,解决这个特殊问题的巨大飞跃来自同癌症没有明显联系的研究。这一回,最有力的结论来自对果蝇的遗传研究。到20世纪初期,人们认为果蝇拥有的一套遗传体系,同人类的非常相似。
尤为重要的是,果蝇的基因很容易被更换。一对果蝇的子女通常和父母一模一样。但是,在20世纪30年代,赫尔曼·穆勒发现,经X线照射过的果蝇产出的后代有时会拥有大不相同的性状。这些全新的性状常常会传递给下一代果蝇,然后代代相传。
穆勒的结论是,一度被认作能够详实准确地由上代传递给下一代的遗传物质,实际上非常脆弱易变。遗传学家称之为可突变的。以某种未知的方式,X线作用于遗传物质并且改变它的信息内容。所以,科学的思路和语汇应是:X线能够使基因突变。
X线引起的难以逆料的遗传变化常常是致命的。但在极少数情况下,这些遗传变化——突变——并没有影响到果蝇的生长发育,尽管基因改变了,它们仍然健康又茁壮。人们对一例通常规定红眼颜色的基因作了深入研究。经X线照射后,眼睛颜色突变基因成了模板,眼睛失去色素,几乎变成纯白色。这个白眼性状能够子子孙孙无限传递。
到二次大战末期,人们发现某些化学物质能使果蝇发生突变。其中一些是那种曾在一战期间用于毒气战的活性很强的氮荠。同以前相仿,一只曾暴露于化学物质的果蝇,它的第二代以及后代传递着变化了的基因形式,这些基因规定着诸如眼睛的颜色、肢体或毛发的发育等不同性状。
大约在1950年,几位遗传学家对积累的有关化学物质、X线、突变的信息进行了归纳,提出了一个统一的总结性理论,尽管它实际上仍属推测范畴。理论如下:X线和某些化学物质可以致癌。X线和化学物质也能导致基因突变。因此,这些致癌因素导致受其影响的动物发生基因突变。换言之,致癌物质(即引起癌症的因素)实即诱变因素(引起突变的因素),而且这两个过程之间有着干丝万缕解不开的瓜葛。
这一推理过程中蕴涵的前提是果蝇基因和人类基因拥有同一种行为模式。到20世纪50年代,这种理论愈发显出其魅力。人们发现果蝇基因和人类细胞都拥有DNA分子。而且,从蠕虫、苍蝇直至人类,所有复杂的生物体,其细胞的构成方式都极为相似。因此,从一个生物体推广到另一个,其立足点坚实雄厚。
这些诱变因素引发的突变也给人带来一点疑惑。遗传学家们研究过那些在有机体身上世代相传的突变基因。但在癌症情况下,诱变因素似乎仅仅损害那些机体内部特定位置的细胞基因。据此推断,一旦一个靶细胞的基因受损,这个突变细胞会在机体内似脱缰野马飞速扩张,迟早会产生一大堆被认作肿瘤的后代细胞。
这里似乎存在两套遗传体系:一套描述基因从生物体母代到子代的传递,一套描述组织内一个细胞的基因向该组织后代细胞的传递。在后一种情况下,被诱变致癌物质改变的基因通常没有机会传递给下一代生物体。肠道、大脑抑或肺细胞的基因,无论受损有多严重,永不会影响机体子代的遗传构成。
对这种二分法可以作更简单的表述:生殖细胞(精子或卵子)的突变可以传递给后代;身体其他部位的细胞(体细胞)发生的突变则不能遗传。这种被称作体细胞突变的玩意显然就是引发癌症的关键角色。
1953年沃森和克里克发现DNA双螺旋结构之后,可以用更确切的语汇来表述有关基因和突变的推断。如果基因内含的信息是以DNA碱基序列方式编码的,那么,突变就是DNA结构的改变,就是组成单个基因的DNA碱基序列发生了变化。如果致癌物质等同诱变因素的理论成立,那么癌细胞中必定含有碱基序列改变了的DNA分子。这些变化后的DNA序列,储存了正常细胞所没有的信息,以某种方式指引着癌细胞失控生长。
致癌物质一诱变因素理论之所以引人入胜,因为它将复杂的致癌现象简化成单一的根本机制。但是要证实这一理论,仍须再花30年的时间进行研究。遗传推论要比现有证据前卫得多,这是屡屡出现的事情。证实诱变因素是致癌物质
20世纪30年代,人们已经知道很多化学物质应用于实验动物身上,有致癌作用。不久,癌症研究人员办起了家庭小作坊,试图再试验动物身上诱发肿瘤。他们通常选择小鼠和大鼠。和山际的兔子一样,它们的生物机理和人类有一定相似,而且它们可以大量繁殖,在好多月份中反复应用化学物质。由于二战以后,化工业开始将几百乃至几千种化学成分投放市场,采用这种方法测试潜在的致癌物质尤显必要。
到20世纪60年代,这种测试方法已经拣选出许多经鉴定会导致啮齿类动物罹患癌症的物质。人们怀疑其中很多种也会使人类生癌,但在大多数情况下,由于不得有意识地将可疑致癌物质应用于人类,这种怀疑永不能得到证实。据信会使啮齿类动物生癌的化学物常常被迫撤出市场,即使被允许用于通常用途,其应用也受到严格限制。
啮齿类动物致癌物测试揭示出许多种能够诱发癌症的化学物。这些潜在的致癌化学物分子结构多种多样。进入生物体以及生物体细胞之后,它们同细胞内部的不同靶分子相结合,以某种方法改变甚至损害靶分子。化学致癌物的多样性意味着人体细胞内部的靶分子同样丰富多彩。
从试验中人们还认识到,不同的化学物对实验动物产生的致癌作用有很大差异。有时候,一种化学成分需要几百毫克地连续应用好多个月,才能诱发癌症。而其他化学物只需几微克的剂量,注射一两次,小鼠或大鼠就会生癌。这种致癌作用的差异系数高达100万甚至更多。测试中发现,致癌作用最强的化学物之一是自然生成的黄曲霉毒素。它是花生和谷物因贮存不当发霉后产生的。对啮齿类动物而言,即便是极少量的黄曲霉毒素也有很强的诱发肝癌作用,非洲一次流行病学调查显示其对人类也具有同样危险。
令人困惑的是居然有这么多的化学物被指证为致癌物质,这不仅没有简化癌症的起源问题,相反使它更复杂化了。怎样才能将堆成山的证据浓缩成少数简单原理呢?确切点说,如何用这些化学物的所作所为来阐明致癌物质一诱变因素理论呢?
20世纪70年代中期,加州大学伯克利分校的遗传学家布鲁斯·埃姆斯(Bruce Ames),为这一谜团提供了一个答案。埃姆斯的早期研究集中于细菌基因的运作。由于涉及细菌功能的基因同更复杂的生命形式的基因非常相似,因此,埃姆斯的工作和多数细菌遗传学一样,有着广泛的影响。细菌基因用DNA分子编码,而且和人类基因一样容易因突变受损。损害人类基因的X线和许多化学物,对细菌能产生同样后果。
研究细菌基因,对研究人类或小鼠基因有一个显著好处。细菌能够多快好省地生长。它们在20分钟内就可以开始繁殖,而小鼠则需要几个月的准备时间。所以,细菌遗传学的成果大大促进了20世纪60~70年代的基因研究。
埃姆斯试图找出一种简单的方法,用以衡量不同化学物的相对诱变能力。他把化学物应用在培养皿中繁殖的沙门菌基因上。在他运用最广泛的试验中,某个关键基因的突变使得突变细菌繁殖成的菌落在培养皿中清晰可见;未突变的细菌则无法有此作为。所以,要精确计量某种潜在诱变因素的作用大小,只要将这种化学物注入盛有适当细菌的培养皿,使细菌基因发生突变,然后计算器中出现的菌落数。增加的菌落数直接反映了受试化学物质的诱变效力。
埃姆斯搜集了一大批已知致癌物,然后用他的细菌突变分析法一个一个地测试过去。对测试结果的分析得出了令人振奋的相关性。对细菌有高度诱变作用的化学物质,在诱发实验用啮齿类动物肿瘤时同样有效;缺乏显著诱变作用的化学物看来也缺少致癌作用。
致癌物质一诱变因素理论不再是空中楼阁,第一次拥有了一点实验基础。而且,一种化学物的致癌能力似乎源自于它损害机体细胞基因的能力。在诱变力和致癌能力之间,果真有着密切联系。
被称作埃姆斯试验(Ames Test)的这一方法还有另一个意外收获。现在,对新发现的化学成分,科学家们可以在一两天内计量它的潜在致癌作用。那时,以人体测试化学成分的安全性受到猛烈抨击,代之以啮齿类动物作为试验对象,试验也需要几年时间,而埃姆斯测试要比它便宜百倍。埃姆斯测试得出的一次阳性结果,几乎决定了受试化学成分的未来命运。
当然,事情并非果真如此简单。有些化学物虽然在埃姆斯细菌测试中呈阴性,但是它们对啮齿类动物和人类癌症发病率的上升难辞其咎。石棉和酒精就是著名的例子。当然,也有一些化学物虽然对于细菌基因突变非常有效,但对哺乳动物只有很小的致癌作用。
所以可以作如下表述:诱变因素通过进入细胞,损害基因,从而导致癌症。不久,人们发现很多致癌物质直接作用于DNA分子,尤其是双螺旋两条链中的碱基。通过改变碱基结构,它们直接影响DNA的信息内容,这恰好就是诱变因素的意图。
因此通过埃姆斯以及其他人的贡献,致癌物质一诱变因素理论赢得了有力支持:许多致癌物经由损坏DNA这一途径,能够制造出突变基因。可是,这只不过是癌症起源的众多理论之一,只要缺少一个关键的证据,它就不能凌驾于其他学说之上,成为真理。如果说致癌物是通过改变基因来引发癌症,那么,癌细胞必定携有突变基因。必须找到这些突变基因。如果找不到,那么,和其他几十种试图阐述这一复杂病症的失败理论一样,致癌物质一诱变因素理论亦属不经之谈。